Skip to main content

Drug Interactions between doxycycline and Symtuza

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Moderate

tenofovir darunavir

Applies to: Symtuza (cobicistat / darunavir / emtricitabine / tenofovir alafenamide) and Symtuza (cobicistat / darunavir / emtricitabine / tenofovir alafenamide)

MONITOR: Coadministration of tenofovir and darunavir-ritonavir or darunavir-cobicistat may result in increased plasma concentrations of tenofovir and darunavir. Increased tenofovir plasma concentration may increase the risk for tenofovir-related renal adverse effects, including renal impairment, renal failure, elevated creatinine, and Fanconi syndrome. The mechanism of this interaction is unknown; however, increased tenofovir concentrations may be related to inhibition of P-glycoprotein by darunavir, cobicistat, or ritonavir in the renal tubules. Cobicistat may decrease estimated creatinine clearance via inhibition of tubular secretion of creatinine; however, renal glomerular function does not appear to be affected. In 12 study subjects, administration of darunavir-ritonavir (300 mg-100 mg twice daily) with tenofovir (300 mg once daily) increased the systemic exposure (AUC) and trough plasma concentration (Cmin) of darunavir by 21% and 24%, respectively, compared to administration without tenofovir. Tenofovir AUC and Cmin also increased by 22% and 37%, respectively, in the presence of darunavir-ritonavir. Data are lacking to determine whether concomitant use of tenofovir with cobicistat-containing regimens is associated with a greater risk of renal complications compared with regimens that do not include cobicistat.

MANAGEMENT: Caution and close monitoring of renal function is recommended if darunavir-ritonavir or darunavir-cobicistat is to be used in combination with tenofovir, particularly in patients with risk factors for renal impairment. No dose adjustments appear necessary during coadministration of darunavir-ritonavir with tenofovir. However, initiation of cobicistat or cobicistat-containing regimens is not recommended in patients with CrCl less than 70 mL/min if any coadministered medicine requires dose adjustment based on renal function (including tenofovir) or is nephrotoxic.

References (4)
  1. Cerner Multum, Inc. "UK Summary of Product Characteristics."
  2. (2006) "Product Information. Prezista (darunavir)." Ortho Biotech Inc
  3. Cerner Multum, Inc. "Australian Product Information."
  4. (2014) "Product Information. Prezcobix (cobicistat-darunavir)." Janssen Pharmaceuticals
Moderate

tenofovir cobicistat

Applies to: Symtuza (cobicistat / darunavir / emtricitabine / tenofovir alafenamide) and Symtuza (cobicistat / darunavir / emtricitabine / tenofovir alafenamide)

MONITOR: Concomitant use of tenofovir with cobicistat may increase the risk for tenofovir-related renal adverse effects, including renal impairment, renal failure, elevated creatinine, and Fanconi syndrome. The mechanism of this interaction has not been described. Cobicistat may decrease estimated creatinine clearance via inhibition of tubular secretion of creatinine; however, renal glomerular function does not appear to be affected. When given concomitantly with cobicistat, the systemic exposure (AUC) and trough plasma concentrations (Cmin) of tenofovir was also increased by 23% and 55%, respectively. However, data are lacking to determine whether concomitant use of tenofovir with cobicistat-containing regimens is associated with a greater risk of renal complications compared with regimens that do not include cobicistat.

MANAGEMENT: Initiation of cobicistat or cobicistat-containing regimens is not recommended in patients with CrCl less than 70 mL/min if any coadministered medicine requires dose adjustment based on renal function (including tenofovir), or is nephrotoxic. If concomitant therapy is necessary, monitoring of renal function is recommended, particularly in patients with risk factors for renal impairment.

References (4)
  1. (2001) "Product Information. Viread (tenofovir)." Gilead Sciences
  2. Cerner Multum, Inc. "UK Summary of Product Characteristics."
  3. Cerner Multum, Inc. "Australian Product Information."
  4. (2014) "Product Information. Tybost (cobicistat)." Gilead Sciences
Moderate

emtricitabine cobicistat

Applies to: Symtuza (cobicistat / darunavir / emtricitabine / tenofovir alafenamide) and Symtuza (cobicistat / darunavir / emtricitabine / tenofovir alafenamide)

GENERALLY AVOID: Cobicistat may increase the plasma concentrations of antiretroviral agents. The plasma concentrations of cobicistat may also be increased or reduced in the presence of antiretroviral agents. The proposed mechanism is cobicistat inhibition of the CYP450 3A4 isoenzyme, of which antiretroviral agents may be substrates, and the inhibition or induction of CYP450 3A4 by concomitant antiretroviral medications. Cobicistat is a mechanism-based inhibitor and substrate of CYP450 3A4 with no antiretroviral activity of its own. Rather, it is indicated in its capacity as a pharmacokinetic booster of CYP450 3A4 to increase the systemic exposure of some antiretroviral medications such as atazanavir, darunavir, and elvitegravir, which are substrates of this isoenzyme. Concomitant use of other antiretroviral agents with cobicistat may also increase the plasma levels and risk of side effects associated with these medicines. In contrast, concomitant use of cobicistat-boosted atazanavir or darunavir with CYP450 3A4 inducers nevirapine, etravirine, or efavirenz may reduce the plasma concentrations of cobicistat, darunavir, and atazanavir, leading to a potential loss of therapeutic effect and development of resistance to darunavir and atazanavir. Pharmacokinetic data are not available.

MANAGEMENT: Cobicistat is not intended for use with more than one antiretroviral medication that requires pharmacokinetic enhancement, such as two protease inhibitors or elvitegravir in combination with a protease inhibitor. In addition, cobicistat should not be used concomitantly with ritonavir due to their similar effects on CYP450 3A4. According to some authorities, use of the antiretroviral combinations of atazanavir-cobicistat or darunavir-cobicistat concomitantly with the CYP450 3A4 inducers efavirenz, etravirine, or nevirapine is also not recommended. Other authorities consider the administration of atazanavir-cobicistat with efavirenz or nevirapine to be contraindicated. Since dosing recommendations have only been established for a number of antiretroviral medications, product labeling and current antiretroviral treatment guidelines should be consulted.

References (10)
  1. (2001) "Product Information. Viramune (nevirapine)." Boehringer-Ingelheim
  2. (2001) "Product Information. Sustiva (efavirenz)." DuPont Pharmaceuticals
  3. Cerner Multum, Inc. "UK Summary of Product Characteristics."
  4. (2006) "Product Information. Prezista (darunavir)." Ortho Biotech Inc
  5. (2008) "Product Information. Intelence (etravirine)." Ortho Biotech Inc
  6. Cerner Multum, Inc. "Australian Product Information."
  7. (2012) "Product Information. Stribild (cobicistat/elvitegravir/emtricitabine/tenofovir)." Gilead Sciences
  8. (2014) "Product Information. Tybost (cobicistat)." Gilead Sciences
  9. (2014) "Product Information. Prezcobix (cobicistat-darunavir)." Janssen Pharmaceuticals
  10. (2015) "Product Information. Evotaz (atazanavir-cobicistat)." Bristol-Myers Squibb

Drug and food/lifestyle interactions

Moderate

darunavir food/lifestyle

Applies to: Symtuza (cobicistat / darunavir / emtricitabine / tenofovir alafenamide)

ADJUST DOSING INTERVAL: Food enhances the absorption and oral bioavailability of darunavir administered in combination with low-dose ritonavir. The mechanism is unknown. When administered with food, the peak plasma concentration (Cmax) and area under the plasma concentration-time curve (AUC) of darunavir were approximately 30% higher than when administered in the fasting state. Darunavir exposure was similar for the range of meals studied. The total caloric content of the various meals evaluated ranged from 240 Kcal (12 grams fat) to 928 Kcal (56 grams fat).

MANAGEMENT: To ensure maximal oral absorption, darunavir coadministered with ritonavir should be taken with food. The type of food is not important.

References (1)
  1. (2006) "Product Information. Prezista (darunavir)." Ortho Biotech Inc
Moderate

doxycycline food/lifestyle

Applies to: doxycycline

GENERALLY AVOID: The oral bioavailability of quinolone and tetracycline antibiotics may be reduced by concurrent administration of preparations containing polyvalent cations such as aluminum, calcium, iron, magnesium, and zinc. Therapeutic failure may result. The proposed mechanism is chelation of quinolone and tetracycline antibiotics by di- and trivalent cations, forming an insoluble complex that is poorly absorbed from the gastrointestinal tract. Reduced gastrointestinal absorption of the cations should also be considered.

MANAGEMENT: Concomitant administration of oral quinolone and tetracycline antibiotics with preparations containing aluminum, calcium, iron, magnesium, and/or zinc salts should generally be avoided. Otherwise, the times of administration should be staggered by as much as possible to minimize the potential for interaction. Quinolones should typically be dosed either 2 to 4 hours before or 4 to 6 hours after polyvalent cation preparations, depending on the quinolone and formulation. Likewise, tetracyclines and polyvalent cation preparations should typically be administered 2 to 4 hours apart. The prescribing information for the antibiotic should be consulted for more specific dosing recommendations.

References (51)
  1. Polk RE, Helay DP, Sahai J, Drwal L, Racht E (1989) "Effect of ferrous sulfate and multivitamins with zinc on absorption of ciprofloxacin in normal volunteers." Antimicrob Agents Chemother, 33, p. 1841-4
  2. Nix DE, Watson WA, Lener ME, et al. (1989) "Effects of aluminum and magnesium antacids and ranitidine on the absorption of ciprofloxacin." Clin Pharmacol Ther, 46, p. 700-5
  3. Garrelts JC, Godley PJ, Peterie JD, Gerlach EH, Yakshe CC (1990) "Sucralfate significantly reduces ciprofloxacin concentrations in serum." Antimicrob Agents Chemother, 34, p. 931-3
  4. Frost RW, Lasseter KC, Noe AJ, Shamblen EC, Lettieri JT (1992) "Effects of aluminum hydroxide and calcium carbonate antacids on the bioavailability of ciprofloxacin." Antimicrob Agents Chemother, 36, p. 830-2
  5. Yuk JH (1989) "Ciprofloxacin levels when receiving sucralfate." J Am Geriatr Soc, 262, p. 901
  6. Neuvonen PJ (1976) "Interactions with the absorption of tetracyclines." Drugs, 11, p. 45-54
  7. Deppermann KM, Lode H, Hoffken G, Tschink G, Kalz C, Koeppe P (1989) "Influence of ranitidine, pirenzepine, and aluminum magnesium hydroxide on the bioavailability of various antibiotics, including amoxicillin, cephalexin, doxycycline, and amoxicillin-clavulanic acid." Antimicrob Agents Chemother, 33, p. 1901-7
  8. Nguyen VX, Nix DE, Gillikin S, Schentag JJ (1989) "Effect of oral antacid administration on the pharmacokinetics of intravenous doxycycline." Antimicrob Agents Chemother, 33, p. 434-6
  9. Campbell NR, Kara M, Hasinoff BB, Haddara WM, McKay DW (1992) "Norfloxacin interaction with antacids and minerals." Br J Clin Pharmacol, 33, p. 115-6
  10. Parpia SH, Nix DE, Hejmanowski LG, Goldstein HR, Wilton JH, Schentag JJ (1989) "Sucralfate reduces the gastrointestinal absorption of norfloxacin." Antimicrob Agents Chemother, 33, p. 99-102
  11. Nix DE, Wilton JH, Ronald B, Distlerath L, Williams VC, Norman A (1990) "Inhibition of norfloxacin absorption by antacids." Antimicrob Agents Chemother, 34, p. 432-5
  12. Akerele JO, Okhamafe AO (1991) "Influence of oral co-administered metallic drugs on ofloxacin pharmacokinetics." J Antimicrob Chemother, 28, p. 87-94
  13. Gothoni G, Neuvonen PJ, Mattila M, Hackman R (1972) "Iron-tetracycline interaction: effect of time interval between the drugs." Acta Med Scand, 191, p. 409-11
  14. Garty M, Hurwitz A (1980) "Effect of cimetidine and antacids on gastrointestinal absorption of tetracycline." Clin Pharmacol Ther, 28, p. 203-7
  15. Gotz VP, Ryerson GG (1986) "Evaluation of tetracycline on theophylline disposition in patients with chronic obstructive airways disease." Drug Intell Clin Pharm, 20, p. 694-6
  16. McCormack JP, Reid SE, Lawson LM (1990) "Theophylline toxicity induced by tetracycline." Clin Pharm, 9, p. 546-9
  17. D'Arcy PF, McElnay JC (1987) "Drug-antacid interactions: assessment of clinical importance." Drug Intell Clin Pharm, 21, p. 607-17
  18. Wadworth AN, Goa KL (1991) "Lomefloxacin: a review of its antibacterial activity, pharmacokinetic properties and therapeutic use." Drugs, 42, p. 1018-60
  19. Shimada J, Shiba K, Oguma T, et al. (1992) "Effect of antacid on absorption of the quinolone lomefloxacin." Antimicrob Agents Chemother, 36, p. 1219-24
  20. Upton RA (1991) "Pharmacokinetic interactions between theophylline and other medication (Part I)." Clin Pharmacokinet, 20, p. 66-80
  21. Venho VM, Salonen RO, Mattila MJ (1978) "Modification of the pharmacokinetics of doxycycline in man by ferrous sulphate or charcoal." Eur J Clin Pharmacol, 14, p. 277-80
  22. (2002) "Product Information. Minocin (minocycline)." Lederle Laboratories
  23. Sahai J, Healy DP, Stotka J, Polk RE (1993) "The influence of chronic administration of calcium carbonate on the bioavailability of oral ciprofloxacin." Br J Clin Pharmacol, 35, p. 302-4
  24. (2001) "Product Information. Declomycin (demeclocycline)." Lederle Laboratories
  25. Lehto P, Kivisto KT (1994) "Effect of sucralfate on absorption of norfloxacin and ofloxacin." Antimicrob Agents Chemother, 38, p. 248-51
  26. Noyes M, Polk RE (1988) "Norfloxacin and absorption of magnesium-aluminum." Ann Intern Med, 109, p. 168-9
  27. Grasela TH Jr, Schentag JJ, Sedman AJ, et al. (1989) "Inhibition of enoxacin absorption by antacids or ranitidine." Antimicrob Agents Chemother, 33, p. 615-7
  28. Campbell NR, Hasinoff BB (1991) "Iron supplements: a common cause of drug interactions." Br J Clin Pharmacol, 31, p. 251-5
  29. Covington TR, eds., Lawson LC, Young LL (1993) "Handbook of Nonprescription Drugs." Washington, DC: American Pharmaceutical Association
  30. Lehto P, Kivisto KT (1994) "Different effects of products containing metal ions on the absorption of lomefloxacin." Clin Pharmacol Ther, 56, p. 477-82
  31. Bateman FJ (1970) "Effects of tetracyclines." Br Med J, 4, p. 802
  32. Neuvonen PJ, Gothoni G, Hackman R, Bjorksten K (1970) "Interference of iron with the absorption of tetracyclines in man." Br Med J, 4, p. 532-4
  33. Greenberger NJ (1971) "Absorption of tetracyclines: interference by iron." Ann Intern Med, 74, p. 792-3
  34. Neuvonen PJ, Penttila O (1974) "Effect of oral ferrous sulphate on the half-life of doxycycline in man." Eur J Clin Pharmacol, 7, p. 361-3
  35. Spivey JM, Cummings DM, Pierson NR (1996) "Failure of prostatitis treatment secondary to probable ciprofloxacin-sucralfate drug interaction." Pharmacotherapy, 16, p. 314-6
  36. (2001) "Product Information. Levaquin (levofloxacin)." Ortho McNeil Pharmaceutical
  37. (2001) "Product Information. Raxar (grepafloxacin)." Glaxo Wellcome
  38. (2001) "Product Information. Zagam (sparfloxacin)." Rhone Poulenc Rorer
  39. (2001) "Product Information. Trovan (trovafloxacin)." Pfizer U.S. Pharmaceuticals
  40. Teng R, Dogolo LC, Willavize SA, Friedman HL, Vincent J (1997) "Effect of Maalox and omeprazole on the bioavailability of trovafloxacin." J Antimicrob Chemother, 39 Suppl B, p. 93-7
  41. Zix JA, Geerdes-Fenge HF, Rau M, Vockler J, Borner K, Koeppe P, Lode H (1997) "Pharmacokinetics of sparfloxacin and interaction with cisapride and sucralfate." Antimicrob Agents Chemother, 41, p. 1668-72
  42. Honig PK, Gillespie BK (1998) "Clinical significance of pharmacokinetic drug interactions with over-the-counter (OTC) drugs." Clin Pharmacokinet, 35, p. 167-71
  43. Johnson RD, Dorr MB, Talbot GH, Caille G (1998) "Effect of Maalox on the oral absorption of sparfloxacin." Clin Ther, 20, p. 1149-58
  44. Lober S, Ziege S, Rau M, Schreiber G, Mignot A, Koeppe P, Lode H (1999) "Pharmacokinetics of gatifloxacin and interaction with an antacid containing aluminum and magnesium." Antimicrob Agents Chemother, 43, p. 1067-71
  45. Allen A, Vousden M, Porter A, Lewis A (1999) "Effect of Maalox((R)) on the bioavailability of oral gemifloxacin in healthy volunteers." Chemotherapy, 45, p. 504-11
  46. Kamberi M, Nakashima H, Ogawa K, Oda N, Nakano S (2000) "The effect of staggered dosing of sucralfate on oral bioavailability of sparfloxacin." Br J Clin Pharmacol, 49, p. 98-103
  47. (2003) "Product Information. Factive (gemifloxacin)." *GeneSoft Inc
  48. (2010) "Product Information. Suprep Bowel Prep Kit (magnesium/potassium/sodium sulfates)." Braintree Laboratories
  49. (2017) "Product Information. Baxdela (delafloxacin)." Melinta Therapeutics, Inc.
  50. (2018) "Product Information. Seysara (sarecycline)." Allergan Inc
  51. (2018) "Product Information. Nuzyra (omadacycline)." Paratek Pharmaceuticals, Inc.
Minor

tenofovir food/lifestyle

Applies to: Symtuza (cobicistat / darunavir / emtricitabine / tenofovir alafenamide)

Food enhances the oral absorption and bioavailability of tenofovir, the active entity of tenofovir disoproxil fumarate. According to the product labeling, administration of the drug following a high-fat meal increased the mean peak plasma concentration (Cmax) and area under the concentration-time curve (AUC) of tenofovir by approximately 14% and 40%, respectively, compared to administration in the fasting state. However, administration with a light meal did not significantly affect the pharmacokinetics of tenofovir compared to administration in the fasting state. Food delays the time to reach tenofovir Cmax by approximately 1 hour. Tenofovir disoproxil fumarate may be administered without regard to meals.

References (1)
  1. (2001) "Product Information. Viread (tenofovir)." Gilead Sciences
Minor

doxycycline food/lifestyle

Applies to: doxycycline

Chronic alcohol consumption may enhance the elimination of doxycycline. The mechanism is induction of hepatic microsomal enzymes by alcohol. In one study, the half-life of doxycycline in six alcoholics was 10.5 hours, compared with 14.7 hours in six control patients. In addition, half the alcoholic patients had serum concentrations below what is generally considered the minimum therapeutic concentration (0.5 mcg/mL) at 12 to 24 hours after the dose. The investigators suggest that twice-a-day dosing may be indicated in these patients, especially if additional inducing drugs are used. The elimination of other tetracyclines probably is not affected by alcohol consumption.

References (1)
  1. Neuvonen PJ, Penttila O, Roos M, Tirkkonen J (1976) "Effect of long-term alcohol consumption on the half-life of tetracycline and doxycycline in man." Int J Clin Pharmacol Biopharm, 14, p. 303-7

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.