Skip to main content

Drug Interactions between doxycycline and Prilovix Ultralite Plus

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Major

lidocaine topical prilocaine topical

Applies to: Prilovix Ultralite Plus (lidocaine / prilocaine topical) and Prilovix Ultralite Plus (lidocaine / prilocaine topical)

GENERALLY AVOID: Prilocaine can cause dose-related methemoglobin formation via its ortho-toluidine metabolite. Coadministration with other oxidizing agents that can also induce methemoglobinemia including other local anesthetics (e.g., benzocaine, lidocaine),antimalarials (e.g., chloroquine, primaquine, quinine, tafenoquine), nitrates and nitrites, sulfonamides, aminosalicylic acid, dapsone, dimethyl sulfoxide, flutamide, metoclopramide, nitrofurantoin, phenazopyridine, phenobarbital, phenytoin, and rasburicase may increase the risk. Additional risk factors include very young age, anemia, cardiac or pulmonary disease, peripheral vascular disease, liver cirrhosis, shock, sepsis, acidosis, and genetic predisposition (e.g., NADH cytochrome-b5 reductase deficiency; glucose-6-phosphate dehydrogenase deficiency; hemoglobin M). There have been reports of significant methemoglobinemia (20% to 30%) in infants and children following excessive applications of lidocaine-prilocaine cream. These cases involved the use of large doses, larger than recommended areas of application, or infants under the age of 3 months who did not have fully mature enzyme systems. In addition, a few cases involved the concomitant administration of methemoglobin-inducing agents, including a published case of an infant who was treated with lidocaine-prilocaine cream and sulfamethoxazole-trimethoprim. Most patients recovered spontaneously after removal of the cream. The incidence of systemic adverse reactions including methemoglobinemia following topical use is related to level of systemic absorption and can be expected to be directly proportional to the surface area and duration of exposure. In addition, systemic blood levels may be increased in smaller patients (e.g., children), patients with impaired drug elimination, and application to inflamed/abraded areas or broken skin.

MANAGEMENT: Concomitant use of topical lidocaine-prilocaine formulations with other methemoglobin-inducing agents should be avoided in infants younger than 12 months of age. Caution is advised when used in other patients. Signs and symptoms of methemoglobinemia may be delayed some hours after drug exposure. Patients or their caregivers should be advised to seek medical attention if they notice signs and symptoms of methemoglobinemia such as slate-grey cyanosis in buccal mucous membranes, lips, and nail beds; nausea; headache; dizziness; lightheadedness; lethargy; fatigue; dyspnea; tachypnea; tachycardia; palpitation; anxiety; and confusion. In severe cases, patients may progress to central nervous system depression, stupor, seizures, acidosis, cardiac arrhythmias, syncope, shock, coma, and death. Methemoglobinemia should be considered if central cyanosis is unresponsive to oxygen. Calculated oxygen saturation and pulse oximetry are generally not accurate in the setting of methemoglobinemia. The diagnosis can be confirmed by an elevated methemoglobin level of at least 10% using co-oximetry. Methemoglobin concentrations greater than 10% of total hemoglobin will typically cause cyanosis, and levels over 70% are frequently fatal. However, symptom severity is not always related to methemoglobin levels. Mild cases often respond to withdrawal of offending agents and symptomatic support. If patient does not respond to administration of oxygen, clinically significant or symptomatic methemoglobinemia can be treated with methylene blue 1 to 2 mg/kg by slow intravenous injection over 5 to 10 minutes, which may be repeated within 30 to 60 minutes if necessary. Higher dosages of methylene blue (usually greater than 7 mg/kg) should be avoided, as it can paradoxically exacerbate methemoglobinemia. Additionally, methylene blue is ineffective and can cause hemolytic anemia in patients with G6PD deficiency. These patients may be treated with exchange transfusion, dialysis, and/or hyperbaric oxygenation in addition to symptomatic support.

References (6)
  1. (2022) "Product Information. Emla (lidocaine-prilocaine topical)." Astra-Zeneca Pharmaceuticals
  2. Cerner Multum, Inc. "UK Summary of Product Characteristics."
  3. Cerner Multum, Inc. "Australian Product Information."
  4. Agencia Española de Medicamentos y Productos Sanitarios Healthcare (2008) Centro de información online de medicamentos de la AEMPS - CIMA. https://cima.aemps.es/cima/publico/home.html
  5. Guay J (2009) "Methemoglobinemia related to local anesthetics: a summary of 242 episodes." Anesth Analg, 108, p. 837-45
  6. Skold A, Cosco DL, Klein R (2011) "Methemoglobinemia: pathogenesis, diagnosis, and management." South Med J, 104, p. 757-61

Drug and food interactions

Moderate

doxycycline food

Applies to: doxycycline

GENERALLY AVOID: The bioavailability of oral tetracyclines and iron salts may be significantly decreased during concurrent administration. Therapeutic failure may result. The proposed mechanism is chelation of tetracyclines by the iron cation, forming an insoluble complex that is poorly absorbed from the gastrointestinal tract. In ten healthy volunteers, simultaneous oral administration of ferrous sulfate 200 mg and single doses of various tetracyclines (200 mg to 500 mg) resulted in reductions in the serum levels of methacycline and doxycycline by 80% to 90%, oxytetracycline by 50% to 60%, and tetracycline by 40% to 50%. In another study, 300 mg of ferrous sulfate reduced the absorption of tetracycline by 81% and that of minocycline by 77%. Conversely, the absorption of iron has been shown to be decreased by up to 78% in healthy subjects and up to 65% in patients with iron depletion when ferrous sulfate 250 mg was administered with tetracycline 500 mg. Available data suggest that administration of iron 3 hours before or 2 hours after a tetracycline largely prevents the interaction with most tetracyclines except doxycycline. Due to extensive enterohepatic cycling, iron binding may occur with doxycycline even when it is given parenterally. It has also been shown that when iron is administered up to 11 hours after doxycycline, serum concentrations of doxycycline may still be reduced by 20% to 45%.

MANAGEMENT: Coadministration of a tetracycline with any iron-containing product should be avoided if possible. Otherwise, patients should be advised to stagger the times of administration by at least three to four hours, although separating the doses may not prevent the interaction with doxycycline.

References (11)
  1. Neuvonen PJ (1976) "Interactions with the absorption of tetracyclines." Drugs, 11, p. 45-54
  2. Gothoni G, Neuvonen PJ, Mattila M, Hackman R (1972) "Iron-tetracycline interaction: effect of time interval between the drugs." Acta Med Scand, 191, p. 409-11
  3. Venho VM, Salonen RO, Mattila MJ (1978) "Modification of the pharmacokinetics of doxycycline in man by ferrous sulphate or charcoal." Eur J Clin Pharmacol, 14, p. 277-80
  4. (2002) "Product Information. Minocin (minocycline)." Lederle Laboratories
  5. Campbell NR, Hasinoff BB (1991) "Iron supplements: a common cause of drug interactions." Br J Clin Pharmacol, 31, p. 251-5
  6. Bateman FJ (1970) "Effects of tetracyclines." Br Med J, 4, p. 802
  7. Neuvonen PJ, Gothoni G, Hackman R, Bjorksten K (1970) "Interference of iron with the absorption of tetracyclines in man." Br Med J, 4, p. 532-4
  8. Greenberger NJ (1971) "Absorption of tetracyclines: interference by iron." Ann Intern Med, 74, p. 792-3
  9. Neuvonen PJ, Penttila O (1974) "Effect of oral ferrous sulphate on the half-life of doxycycline in man." Eur J Clin Pharmacol, 7, p. 361-3
  10. (2018) "Product Information. Seysara (sarecycline)." Allergan Inc
  11. (2018) "Product Information. Nuzyra (omadacycline)." Paratek Pharmaceuticals, Inc.
Minor

doxycycline food

Applies to: doxycycline

Chronic alcohol consumption may enhance the elimination of doxycycline. The mechanism is induction of hepatic microsomal enzymes by alcohol. In one study, the half-life of doxycycline in six alcoholics was 10.5 hours, compared with 14.7 hours in six control patients. In addition, half the alcoholic patients had serum concentrations below what is generally considered the minimum therapeutic concentration (0.5 mcg/mL) at 12 to 24 hours after the dose. The investigators suggest that twice-a-day dosing may be indicated in these patients, especially if additional inducing drugs are used. The elimination of other tetracyclines probably is not affected by alcohol consumption.

References (1)
  1. Neuvonen PJ, Penttila O, Roos M, Tirkkonen J (1976) "Effect of long-term alcohol consumption on the half-life of tetracycline and doxycycline in man." Int J Clin Pharmacol Biopharm, 14, p. 303-7

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.