Skip to main content

Drug Interactions between diltiazem and insulin glargine / lixisenatide

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Moderate

insulin glargine lixisenatide

Applies to: insulin glargine / lixisenatide and insulin glargine / lixisenatide

ADJUST DOSE: Coadministration of a glucagon-like peptide-1 (GLP-1) receptor agonist or dual GLP-1 and glucose-dependent insulinotropic polypeptide (GIP) receptor agonist with insulin may potentiate the risk of hypoglycemia. GLP-1 receptor agonists and dual GLP-1 and GIP receptor agonists lower blood glucose by stimulating insulin secretion and lowering glucagon secretion. An increased incidence of hypoglycemia has been observed in patients treated with a combination of basal insulin and GLP-1 or dual GLP-1 and GIP receptor agonists. Additionally, patients with diabetic retinopathy who received treatment with basal insulin and subcutaneous semaglutide in one clinical trial had an increased risk of developing diabetic retinopathy complications. Rapid improvement in glucose control has been associated with a temporary worsening of diabetic retinopathy, but other mechanisms cannot be excluded. The safety and efficacy of GLP-1 or dual GLP-1 and GIP receptor agonists in combination with non-basal insulin have not been established.

MANAGEMENT: When a GLP-1 receptor agonist or dual GLP-1 and GIP receptor agonist is used as add-on therapy to basal insulin, a lower dosage of insulin may be required. Some clinical trials have reduced the basal insulin dose by 20% in patients with a baseline hemoglobin A1c <= 8% when a GLP-1 or dual GLP-1 and GIP receptor agonist was initiated. Because diabetic ketoacidosis has been reported in insulin-dependent patients after rapid discontinuation or dose reduction of insulin, a stepwise approach to insulin dose reduction is recommended and blood glucose levels should be closely monitored. Patients should receive guidance on the recognition and management of hypoglycemia as well as precautions to take to avoid hypoglycemia, particularly while driving or operating hazardous machinery. Those with diabetic retinopathy should also be monitored for progression of the condition or complications. A rapid improvement in glucose control has been associated with a temporary worsening of diabetic retinopathy.

References (15)
  1. (2010) "Product Information. Victoza (liraglutide)." Novo Nordisk Pharmaceuticals Inc
  2. (2014) "Product Information. Tanzeum (albiglutide)." GlaxoSmithKline
  3. (2014) "Product Information. Trulicity (dulaglutide)." Eli Lilly and Company
  4. (2016) "Product Information. Adlyxin (lixisenatide)." sanofi-aventis
  5. (2022) "Product Information. Ozempic (1 mg dose) (semaglutide)." Novo Nordisk Pharmaceuticals Inc
  6. (2022) "Product Information. Mounjaro (tirzepatide)." Lilly, Eli and Company
  7. (2022) "Product Information. Wegovy (2.4 mg dose) (semaglutide)." Novo Nordisk Pharmaceuticals Inc, SUPPL-3
  8. (2023) "Product Information. Bydureon BCise (exenatide)." AstraZeneca UK Ltd
  9. (2022) "Product Information. Byetta Prefilled Pen (exenatide)." Astra-Zeneca Pharmaceuticals
  10. (2014) "Product Information. Eperzan (albiglutide)." GlaxoSmithKline UK Ltd
  11. (2023) "Product Information. Trulicity (dulaglutide)." Eli Lilly and Company Ltd
  12. (2022) "Product Information. Saxenda (liraglutide)." Novo Nordisk Ltd
  13. (2022) "Product Information. Victoza (liraglutide)." Novo Nordisk Ltd
  14. (2022) "Product Information. Lyxumia (lixisenatide)." Sanofi
  15. (2023) "Product Information. Ozempic (semaglutide)." Novo Nordisk Ltd
Minor

dilTIAZem insulin glargine

Applies to: diltiazem and insulin glargine / lixisenatide

A single case report suggests that diltiazem may decrease the hypoglycemic effect of insulin. The mechanism of interaction is unknown. Diltiazem 180 mg/day reportedly had no effect on glucose levels in normal subjects. In addition, diltiazem 240 to 360 mg/day had no significant effects on glucose control in 23 hypertensive patients with Type II diabetes. While no special precautions appear to be necessary, patients may consider monitoring blood glucose more closely during the first few days or weeks of diltiazem therapy until glucose control is assured.

References (1)
  1. Pershadsingh HA, Grant N, McDonald JM (1987) "Association of diltiazem therapy with increased insulin resistance in a patient with type I diabetes mellitus." JAMA, 257, p. 930-1

Drug and food interactions

Moderate

dilTIAZem food

Applies to: diltiazem

MONITOR: Like many CNS-active agents, alcohol can exhibit hypotensive effects. Coadministration with antihypertensive agents including diltiazem may result in additive effects on blood pressure and orthostasis.

MONITOR: Grapefruit juice may increase the plasma concentrations of orally administered diltiazem in some patients. The proposed mechanism is inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall by certain compounds present in grapefruit. In a study of ten healthy male volunteers, administration of a single 120 mg oral dose of immediate-release diltiazem in combination with 250 mL of grapefruit juice increased the diltiazem peak plasma concentration (Cmax) and systemic exposure (AUC) by an average of 22% and 20%, respectively, compared to administration with water. The time to reach Cmax (Tmax) and the terminal half-life were not affected, and no statistically significant differences in blood pressure and heart rate were observed during administration with grapefruit juice relative to water. In a different study, repeated administration of 200 mL of grapefruit juice at 0, 2, 4, 8 and 12 hours had no significant effect on the Cmax or AUC of a single 120 mg oral dose of diltiazem, but increased its half-life from 4.1 to 5.1 hours. The ratios for the N-demethyl and deacetyl metabolites to diltiazem were also not affected by grapefruit juice. However, because pharmacokinetic interactions involving grapefruit juice are often subject to a high degree of interpatient variability, the extent to which a given patient may be affected is difficult to predict.

MANAGEMENT: Patients should be advised that alcohol may potentiate the hypotensive effects of diltiazem, especially during the initiation of therapy and following a dosage increase. Caution should be exercised when rising from a sitting or recumbent position, and patients should notify their physician if they experience dizziness, lightheadedness, syncope, orthostasis, or tachycardia. Patients who regularly consume grapefruit or grapefruit juice should be monitored for increased adverse effects of diltiazem such as such as headache, irregular heartbeat, edema, unexplained weight gain, and chest pain. Grapefruit and grapefruit juice should be avoided if an interaction is suspected.

References (5)
  1. Bailey DG, Arnold JMO, Spence JD (1994) "Grapefruit juice and drugs - how significant is the interaction." Clin Pharmacokinet, 26, p. 91-8
  2. Sigusch H, Henschel L, Kraul H, Merkel U, Hoffmann A (1994) "Lack of effect of grapefruit juice on diltiazem bioavailability in normal subjects." Pharmazie, 49, p. 675-9
  3. Bailey DG, Malcolm J, Arnold O, Spence JD (1998) "Grapefruit juice-drug interactions." Br J Clin Pharmacol, 46, p. 101-10
  4. Christensen H, Asberg A, Holmboe AB, Berg KJ (2002) "Coadministration of grapefruit juice increases systemic exposure of diltiazem in healthy volunteers." Eur J Clin Pharmacol, 58, p. 515-520
  5. Cerner Multum, Inc. "UK Summary of Product Characteristics."
Moderate

insulin glargine food

Applies to: insulin glargine / lixisenatide

GENERALLY AVOID: Alcohol may cause hypoglycemia or hyperglycemia in patients with diabetes. Hypoglycemia most frequently occurs during acute consumption of alcohol. Even modest amounts can lower blood sugar significantly, especially when the alcohol is ingested on an empty stomach or following exercise. The mechanism involves inhibition of both gluconeogenesis as well as the counter-regulatory response to hypoglycemia. Episodes of hypoglycemia may last for 8 to 12 hours after ethanol ingestion. By contrast, chronic alcohol abuse can cause impaired glucose tolerance and hyperglycemia. Moderate alcohol consumption generally does not affect blood glucose levels in patients with well controlled diabetes. A disulfiram-like reaction (e.g., flushing, headache, and nausea) to alcohol has been reported frequently with the use of chlorpropamide and very rarely with other sulfonylureas.

MANAGEMENT: Patients with diabetes should avoid consuming alcohol if their blood glucose is not well controlled, or if they have hypertriglyceridemia, neuropathy, or pancreatitis. Patients with well controlled diabetes should limit their alcohol intake to one drink daily for women and two drinks daily for men (1 drink = 5 oz wine, 12 oz beer, or 1.5 oz distilled spirits) in conjunction with their normal meal plan. Alcohol should not be consumed on an empty stomach or following exercise.

References (10)
  1. Jerntorp P, Almer LO (1981) "Chlorpropamide-alcohol flushing in relation to macroangiopathy and peripheral neuropathy in non-insulin dependent diabetes." Acta Med Scand, 656, p. 33-6
  2. Jerntorp P, Almer LO, Holin H, et al. (1983) "Plasma chlorpropamide: a critical factor in chlorpropamide-alcohol flush." Eur J Clin Pharmacol, 24, p. 237-42
  3. Barnett AH, Spiliopoulos AJ, Pyke DA, et al. (1983) "Metabolic studies in chlorpropamide-alcohol flush positive and negative type 2 (non-insulin dependent) diabetic patients with and without retinopathy." Diabetologia, 24, p. 213-5
  4. Hartling SG, Faber OK, Wegmann ML, Wahlin-Boll E, Melander A (1987) "Interaction of ethanol and glipizide in humans." Diabetes Care, 10, p. 683-6
  5. (2002) "Product Information. Diabinese (chlorpropamide)." Pfizer U.S. Pharmaceuticals
  6. (2002) "Product Information. Glucotrol (glipizide)." Pfizer U.S. Pharmaceuticals
  7. "Product Information. Diabeta (glyburide)." Hoechst Marion-Roussel Inc, Kansas City, MO.
  8. Skillman TG, Feldman JM (1981) "The pharmacology of sulfonylureas." Am J Med, 70, p. 361-72
  9. (2002) "Position Statement: evidence-based nutrition principles and recommendations for the treatment and prevention of diabetes related complications. American Diabetes Association." Diabetes Care, 25(Suppl 1), S50-S60
  10. Cerner Multum, Inc. "UK Summary of Product Characteristics."
Moderate

lixisenatide food

Applies to: insulin glargine / lixisenatide

ADJUST DOSING INTERVAL: Lixisenatide slows gastric emptying, which may impact the absorption of concomitantly administered oral medications. The interaction has been studied with various medications, which demonstrated primarily an effect on the rate rather than the overall extent of absorption.

Acetaminophen: When acetaminophen 1000 mg was administered 1 hour and 4 hours after lixisenatide 10 mcg injection, acetaminophen peak plasma concentration (Cmax) was decreased by 29% and 31%, respectively; and median time to peak plasma concentration (Tmax) was delayed by 2 hours and 1.75 hours, respectively. The Cmax and Tmax of acetaminophen were not significantly altered when acetaminophen was given one hour before lixisenatide injection, and systemic exposure (AUC) was not affected whether administered before or after lixisenatide administration. Based on these results, no dose adjustment for acetaminophen is required; however, it may be advisable to take acetaminophen at least one hour before lixisenatide if a rapid onset of action is required.

Oral Contraceptives: When an oral contraceptive containing ethinyl estradiol 0.03 mg and levonorgestrel 0.15 mg was administered 1 hour and 4 hours after lixisenatide 10 mcg injection, ethinyl estradiol Cmax was decreased by 52% and 39%, respectively, while levonorgestrel Cmax was decreased by 46% and 20%, respectively. Median Tmax values were delayed by 1 to 3 hours, but overall exposure (AUC) and mean terminal half-life (T1/2) of ethinyl estradiol and levonorgestrel were not significantly altered. Administration of the oral contraceptive 1 hour before or 11 hours after lixisenatide had no effect on any of the measured pharmacokinetic parameters of either ethinyl estradiol or levonorgestrel. Based on these results, no dose adjustment for oral contraceptives is required; however, some authorities recommend that oral contraceptives be administered at least 1 hour before or 11 hours after lixisenatide.

Atorvastatin: When atorvastatin 40 mg and lixisenatide 20 mcg were coadministered in the morning for 6 days, atorvastatin Cmax was decreased by 31% and Tmax was delayed by 3.25 hours, but AUC was not affected. When atorvastatin was administered in the evening and lixisenatide in the morning, the AUC and Cmax of atorvastatin were increased by 27% and 66%, respectively, but there was no change in Tmax. Based on these results, no dose adjustment for atorvastatin is required; however, some authorities recommend that atorvastatin be administered at least 1 hour before lixisenatide.

Warfarin: When warfarin 25 mg was coadministered with repeated dosing of lixisenatide 20 mcg, warfarin Cmax was decreased by 19% and Tmax was delayed by 7 hours, but there were no effects on AUC or International Normalized Ratio (INR). Based on these results, no dose adjustment for warfarin is required; however, closer monitoring of INR may be appropriate following initiation or discontinuation of lixisenatide treatment.

Digoxin: When digoxin 0.25 mg and lixisenatide 20 mcg were coadministered at steady state, digoxin Cmax was decreased by 26% and Tmax was delayed by 1.5 hours, but AUC was not affected. Based on these results, no dose adjustment for digoxin is required.

Ramipril: When ramipril 5 mg and lixisenatide 20 mcg were coadministered for 6 days, ramipril Cmax was decreased by 63% and AUC was increased by 21%, while Cmax and AUC of the active metabolite (ramiprilat) were not affected. The Tmax values of ramipril and ramiprilat were delayed by approximately 2.5 hours. Based on these results, no dose adjustment for ramipril is required.

MANAGEMENT: Caution is advised during concomitant use of lixisenatide with oral medications that have a narrow therapeutic index or that require careful clinical monitoring. These medications should be administered on a consistent schedule relative to lixisenatide, and blood levels and/or pharmacologic effects should be closely monitored. In addition, if they are to be administered with food, patients should be advised to take them with a meal or snack when lixisenatide is not administered. Oral medications that are particularly dependent on threshold concentrations for efficacy, such as antibiotics, or medications for which a delay in effect is undesirable, such as acetaminophen, should be administered at least 1 hour before lixisenatide. Gastro-resistant formulations containing substances sensitive to stomach degradation should be administered 1 hour before or 4 hours after lixisenatide. Patients taking oral contraceptives should be advised to take them at least 1 hour before or 11 hours after lixisenatide.

References (1)
  1. Cerner Multum, Inc. "UK Summary of Product Characteristics."
Moderate

dilTIAZem food

Applies to: diltiazem

MONITOR: Calcium-containing products may decrease the effectiveness of calcium channel blockers by saturating calcium channels with calcium. Calcium chloride has been used to manage acute severe verapamil toxicity.

MANAGEMENT: Management consists of monitoring the effectiveness of calcium channel blocker therapy during coadministration with calcium products.

References (14)
  1. Henry M, Kay MM, Viccellio P (1985) "Cardiogenic shock associated with calcium-channel and beta blockers: reversal with intravenous calcium chloride." Am J Emerg Med, 3, p. 334-6
  2. Moller IW (1987) "Cardiac arrest following intravenous verapamil combined with halothane anaesthesia." Br J Anaesth, 59, p. 522-6
  3. Oszko MA, Klutman NE (1987) "Use of calcium salts during cardiopulmonary resuscitation for reversing verapamil-associated hypotension." Clin Pharm, 6, p. 448-9
  4. Schoen MD, Parker RB, Hoon TJ, et al. (1991) "Evaluation of the pharmacokinetics and electrocardiographic effects of intravenous verapamil with intravenous calcium chloride pretreatment in normal subjects." Am J Cardiol, 67, p. 300-4
  5. O'Quinn SV, Wohns DH, Clarke S, Koch G, Patterson JH, Adams KF (1990) "Influence of calcium on the hemodynamic and anti-ischemic effects of nifedipine observed during treadmill exercise testing." Pharmacotherapy, 10, p. 247
  6. Woie L, Storstein L (1981) "Successful treatment of suicidal verapamil poisoning with calcium gluconate." Eur Heart J, 2, p. 239-42
  7. Morris DL, Goldschlager N (1983) "Calcium infusion for reversal of adverse effects of intravenous verapamil." JAMA, 249, p. 3212-3
  8. Guadagnino V, Greengart A, Hollander G, Solar M, Shani J, Lichstein E (1987) "Treatment of severe left ventricular dysfunction with calcium chloride in patients receiving verapamil." J Clin Pharmacol, 27, p. 407-9
  9. Luscher TF, Noll G, Sturmer T, Huser B, Wenk M (1994) "Calcium gluconate in severe verapamil intoxication." N Engl J Med, 330, p. 718-20
  10. Bar-Or D, Gasiel Y (1981) "Calcium and calciferol antagonise effect of verapamil in atrial fibrillation." Br Med J (Clin Res Ed), 282, p. 1585-6
  11. Lipman J, Jardine I, Roos C, Dreosti L (1982) "Intravenous calcium chloride as an antidote to verapamil-induced hypotension." Intensive Care Med, 8, p. 55-7
  12. McMillan R (1988) "Management of acute severe verapamil intoxication." J Emerg Med, 6, p. 193-6
  13. Perkins CM (1978) "Serious verapamil poisoning: treatment with intravenous calcium gluconate." Br Med J, 2, p. 1127
  14. Moroni F, Mannaioni PF, Dolara A, Ciaccheri M (1980) "Calcium gluconate and hypertonic sodium chloride in a case of massive verapamil poisoning." Clin Toxicol, 17, p. 395-400

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.