Skip to main content

Drug Interactions between Di-Phen and Tiazac

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Moderate

dilTIAZem phenytoin

Applies to: Tiazac (diltiazem) and Di-Phen (phenytoin)

MONITOR: Diltiazem and verapamil may increase plasma phenytoin levels. Toxicity has been reported. The proposed mechanism is inhibition of CYP450 3A4 metabolism. In addition, phenytoin may significantly decrease calcium channel blocker (CCB) serum levels by inducing first-pass metabolism and the systemic clearance. Other hydantoins may participate in these interactions as well.

MANAGEMENT: Close clinical and laboratory observation for evidence of altered effect of both drugs is recommended if a CCB and a hydantoin must be used together. Patients should be advised to notify their physician if they experience symptoms of phenytoin toxicity (e.g., drowsiness, visual disturbances, change in mental status, seizures, nausea, or ataxia) or loss of effect of their CCB.

References

  1. Bahls FH, Ozuna J, Ritchie DE "Interactions between calcium channel blockers and the anticonvulsants carbamazepine and phenytoin." Neurology 41 (1991): 740-2
  2. Woodcock BG, Kirsten R, Nelson K, Rietbrock S, Hopf R, Kaltenbach M "A reduction in verapamil concentrations with phenytoin." N Engl J Med 325 (1991): 1179
  3. Ahmad S "Nifedipine-phenytoin interaction." J Am Coll Cardiol 3 (1984): 1582
  4. Capewell S, Critchley JA, Freestone S, Pottage A, Prescott LF "Reduced felodipine bioavailability in patients taking anticonvulsants." Lancet 2 (1988): 480
  5. Clarke WR, Horn JR, Kawabori I, Gurtel S "Potentially serious drug interactions secondary to high-dose diltiazem used in the treatment of pulmonary hypertension." Pharmacotherapy 13 (1993): 402-5
  6. Michelucci R, Cipolla G, Passarelli D, Gatti G, Ochan M, Heinig R, Tassinari CA, Perucca E "Reduced plasma nisoldipine concentrations in phenytoin-treated patients with epilepsy." Epilepsia 37 (1996): 1107-10
View all 6 references

Switch to consumer interaction data

Drug and food interactions

Moderate

dilTIAZem food

Applies to: Tiazac (diltiazem)

MONITOR: Like many CNS-active agents, alcohol can exhibit hypotensive effects. Coadministration with antihypertensive agents including diltiazem may result in additive effects on blood pressure and orthostasis.

MONITOR: Grapefruit juice may increase the plasma concentrations of orally administered diltiazem in some patients. The proposed mechanism is inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall by certain compounds present in grapefruit. In a study of ten healthy male volunteers, administration of a single 120 mg oral dose of immediate-release diltiazem in combination with 250 mL of grapefruit juice increased the diltiazem peak plasma concentration (Cmax) and systemic exposure (AUC) by an average of 22% and 20%, respectively, compared to administration with water. The time to reach Cmax (Tmax) and the terminal half-life were not affected, and no statistically significant differences in blood pressure and heart rate were observed during administration with grapefruit juice relative to water. In a different study, repeated administration of 200 mL of grapefruit juice at 0, 2, 4, 8 and 12 hours had no significant effect on the Cmax or AUC of a single 120 mg oral dose of diltiazem, but increased its half-life from 4.1 to 5.1 hours. The ratios for the N-demethyl and deacetyl metabolites to diltiazem were also not affected by grapefruit juice. However, because pharmacokinetic interactions involving grapefruit juice are often subject to a high degree of interpatient variability, the extent to which a given patient may be affected is difficult to predict.

MANAGEMENT: Patients should be advised that alcohol may potentiate the hypotensive effects of diltiazem, especially during the initiation of therapy and following a dosage increase. Caution should be exercised when rising from a sitting or recumbent position, and patients should notify their physician if they experience dizziness, lightheadedness, syncope, orthostasis, or tachycardia. Patients who regularly consume grapefruit or grapefruit juice should be monitored for increased adverse effects of diltiazem such as such as headache, irregular heartbeat, edema, unexplained weight gain, and chest pain. Grapefruit and grapefruit juice should be avoided if an interaction is suspected.

References

  1. Bailey DG, Arnold JMO, Spence JD "Grapefruit juice and drugs - how significant is the interaction." Clin Pharmacokinet 26 (1994): 91-8
  2. Sigusch H, Henschel L, Kraul H, Merkel U, Hoffmann A "Lack of effect of grapefruit juice on diltiazem bioavailability in normal subjects." Pharmazie 49 (1994): 675-9
  3. Bailey DG, Malcolm J, Arnold O, Spence JD "Grapefruit juice-drug interactions." Br J Clin Pharmacol 46 (1998): 101-10
  4. Christensen H, Asberg A, Holmboe AB, Berg KJ "Coadministration of grapefruit juice increases systemic exposure of diltiazem in healthy volunteers." Eur J Clin Pharmacol 58 (2002): 515-520
  5. Cerner Multum, Inc. "UK Summary of Product Characteristics." O 0
View all 5 references

Switch to consumer interaction data

Moderate

phenytoin food

Applies to: Di-Phen (phenytoin)

ADJUST DOSING INTERVAL: Phenytoin bioavailability may decrease to subtherapeutic levels when the suspension is given concomitantly with enteral feedings. The mechanism may be related to phenytoin binding to substances in the enteral formula (e.g., calcium, protein) and/or binding to the tube lumen. Data have been conflicting and some studies have reported no changes in phenytoin levels, while others have reported significant reductions.

MONITOR: Acute consumption of alcohol may increase plasma phenytoin levels. Chronic consumption of alcohol may decrease plasma phenytoin levels. The mechanism of this interaction is related to induction of phenytoin metabolism by ethanol during chronic administration. Other hydantoin derivatives may be similarly affected by ethanol.

MANAGEMENT: Some experts have recommended interrupting the feeding for 2 hours before and after the phenytoin dose, giving the phenytoin suspension diluted in water, and flushing the tube with water after administration; however, this method may not entirely avoid the interaction and is not always clinically feasible. Patients should be closely monitored for clinical and laboratory evidence of altered phenytoin efficacy and levels upon initiation and discontinuation of enteral feedings. Dosage adjustments or intravenous administration may be required until therapeutic serum levels are obtained. In addition, patients receiving phenytoin therapy should be warned about the interaction between phenytoin and ethanol and they should be advised to notify their physician if they experience worsening of seizure control or symptoms of toxicity, including drowsiness, visual disturbances, change in mental status, nausea, or ataxia.

References

  1. Sandor P, Sellers EM, Dumbrell M, Khouw V "Effect of short- and long-term alcohol use on phenytoin kinetics in chronic alcoholics." Clin Pharmacol Ther 30 (1981): 390-7
  2. Holtz L, Milton J, Sturek JK "Compatibility of medications with enteral feedings." JPEN J Parenter Enteral Nutr 11 (1987): 183-6
  3. Sellers EM, Holloway MR "Drug kinetics and alcohol ingestion." Clin Pharmacokinet 3 (1978): 440-52
  4. "Product Information. Dilantin (phenytoin)." Parke-Davis PROD (2001):
  5. Doak KK, Haas CE, Dunnigan KJ, et al. "Bioavailability of phenytoin acid and phenytoin sodium with enteral feedings." Pharmacotherapy 18 (1998): 637-45
  6. Rodman DP, Stevenson TL, Ray TR "Phenytoin malabsorption after jejunostomy tube delivery." Pharmacotherapy 15 (1995): 801-5
  7. Au Yeung SC, Ensom MH "Phenytoin and enteral feedings: does evidence support an interaction?" Ann Pharmacother 34 (2000): 896-905
  8. Ozuna J, Friel P "Effect of enteral tube feeding on serum phenytoin levels." J Neurosurg Nurs 16 (1984): 289-91
  9. Faraji B, Yu PP "Serum phenytoin levels of patients on gastrostomy tube feeding." J Neurosci Nurs 30 (1998): 55-9
  10. Marvel ME, Bertino JS "Comparative effects of an elemental and a complex enteral feeding formulation on the absorption of phenytoin suspension." JPEN J Parenter Enteral Nutr 15 (1991): 316-8
  11. Fleisher D, Sheth N, Kou JH "Phenytoin interaction with enteral feedings administered through nasogastric tubes." JPEN J Parenter Enteral Nutr 14 (1990): 513-6
  12. Haley CJ, Nelson J "Phenytoin-enteral feeding interaction." DICP 23 (1989): 796-8
  13. Guidry JR, Eastwood TF, Curry SC "Phenytoin absorption in volunteers receiving selected enteral feedings." West J Med 150 (1989): 659-61
  14. Krueger KA, Garnett WR, Comstock TJ, Fitzsimmons WE, Karnes HT, Pellock JM "Effect of two administration schedules of an enteral nutrient formula on phenytoin bioavailability." Epilepsia 28 (1987): 706-12
  15. Cerner Multum, Inc. "UK Summary of Product Characteristics." O 0
  16. Cerner Multum, Inc. "Australian Product Information." O 0
View all 16 references

Switch to consumer interaction data

Moderate

dilTIAZem food

Applies to: Tiazac (diltiazem)

MONITOR: Calcium-containing products may decrease the effectiveness of calcium channel blockers by saturating calcium channels with calcium. Calcium chloride has been used to manage acute severe verapamil toxicity.

MANAGEMENT: Management consists of monitoring the effectiveness of calcium channel blocker therapy during coadministration with calcium products.

References

  1. Henry M, Kay MM, Viccellio P "Cardiogenic shock associated with calcium-channel and beta blockers: reversal with intravenous calcium chloride." Am J Emerg Med 3 (1985): 334-6
  2. Moller IW "Cardiac arrest following intravenous verapamil combined with halothane anaesthesia." Br J Anaesth 59 (1987): 522-6
  3. Oszko MA, Klutman NE "Use of calcium salts during cardiopulmonary resuscitation for reversing verapamil-associated hypotension." Clin Pharm 6 (1987): 448-9
  4. Schoen MD, Parker RB, Hoon TJ, et al. "Evaluation of the pharmacokinetics and electrocardiographic effects of intravenous verapamil with intravenous calcium chloride pretreatment in normal subjects." Am J Cardiol 67 (1991): 300-4
  5. O'Quinn SV, Wohns DH, Clarke S, Koch G, Patterson JH, Adams KF "Influence of calcium on the hemodynamic and anti-ischemic effects of nifedipine observed during treadmill exercise testing." Pharmacotherapy 10 (1990): 247
  6. Woie L, Storstein L "Successful treatment of suicidal verapamil poisoning with calcium gluconate." Eur Heart J 2 (1981): 239-42
  7. Morris DL, Goldschlager N "Calcium infusion for reversal of adverse effects of intravenous verapamil." JAMA 249 (1983): 3212-3
  8. Guadagnino V, Greengart A, Hollander G, Solar M, Shani J, Lichstein E "Treatment of severe left ventricular dysfunction with calcium chloride in patients receiving verapamil." J Clin Pharmacol 27 (1987): 407-9
  9. Luscher TF, Noll G, Sturmer T, Huser B, Wenk M "Calcium gluconate in severe verapamil intoxication." N Engl J Med 330 (1994): 718-20
  10. Bar-Or D, Gasiel Y "Calcium and calciferol antagonise effect of verapamil in atrial fibrillation." Br Med J (Clin Res Ed) 282 (1981): 1585-6
  11. Lipman J, Jardine I, Roos C, Dreosti L "Intravenous calcium chloride as an antidote to verapamil-induced hypotension." Intensive Care Med 8 (1982): 55-7
  12. McMillan R "Management of acute severe verapamil intoxication." J Emerg Med 6 (1988): 193-6
  13. Perkins CM "Serious verapamil poisoning: treatment with intravenous calcium gluconate." Br Med J 2 (1978): 1127
  14. Moroni F, Mannaioni PF, Dolara A, Ciaccheri M "Calcium gluconate and hypertonic sodium chloride in a case of massive verapamil poisoning." Clin Toxicol 17 (1980): 395-400
View all 14 references

Switch to consumer interaction data

Therapeutic duplication warnings

Therapeutic duplication is the use of more than one medicine from the same drug category or therapeutic class to treat the same condition. This can be intentional in cases where drugs with similar actions are used together for demonstrated therapeutic benefit. It can also be unintentional in cases where a patient has been treated by more than one doctor, or had prescriptions filled at more than one pharmacy, and can have potentially adverse consequences.

Duplication

Antiarrhythmics

Therapeutic duplication

The recommended maximum number of medicines in the 'antiarrhythmics' category to be taken concurrently is usually one. Your list includes two medicines belonging to the 'antiarrhythmics' category:

  • Di-Phen (phenytoin)
  • Tiazac (diltiazem)

Note: In certain circumstances, the benefits of taking this combination of drugs may outweigh any risks. Always consult your healthcare provider before making changes to your medications or dosage.


Report options

Loading...
QR code containing a link to this page

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.