Drug Interactions between dexamethasone / lidocaine and levothyroxine
This report displays the potential drug interactions for the following 2 drugs:
- dexamethasone/lidocaine
- levothyroxine
Interactions between your drugs
dexAMETHasone levothyroxine
Applies to: dexamethasone / lidocaine and levothyroxine
MONITOR: Concomitant use of androgens and/or anabolic steroids or corticosteroids with thyroid hormone replacement therapy, may cause a transient decrease in thyroid hormone replacement requirements. The proposed mechanism is a decrease in T4 binding globulin resulting in an initial transient increase in free T4. However, continued administration results in a decrease in serum T4 and normal free T4 and TSH concentrations. In addition, the clearance of corticosteroids may be increased in hyperthyroid patients, and decreased in hypothyroid patients, changes in thyroid hormone replacement dosage may affect corticosteroid dosage. Glucocorticoids may also inhibit the peripheral conversion of T4 to its active form T3. In addition, initiation of thyroid hormone replacement prior to initiating glucocorticoid therapy may precipitate an acute adrenal crisis in patients with adrenal insufficiency.
MANAGEMENT: Clinical and laboratory monitoring of thyroid function is recommended for patients receiving thyroid hormone replacement therapy and androgens and/or anabolic steroids, or corticosteroids. Thyroid hormone dosage adjustments may be needed. Patients should be advised to contact their physician if clinical manifestations of hyperthyroidism occur, such as appetite changes, unexplained weight loss, insomnia, and fatigue. In addition, when the dosage of the thyroid medication is changed, the corticosteroid dosage may need to be adjusted. Patients with adrenal insufficiency should be treated with replacement glucocorticoids prior to initiating thyroid hormone replacement.
References (8)
- Arafah BM (1994) "Decreased levothyroxine requirement in women with hypothyroidism during androgen therapy for breast cancer." Ann Intern Med, 121, p. 247-51
- (2024) "Product Information. Synthroid (levothyroxine)." AbbVie US LLC
- (2024) "Product Information. Levothyroxine Sodium (levothyroxine)." Lannett Company Inc
- (2023) "Product Information. Levothyroxine Sodium (levothyroxine)." Zentiva Pharma UK Ltd
- (2023) "Product Information. Levothyroxine (Sandoz) (levothyroxine sodium)." Sandoz Pty Ltd
- (2024) "Product Information. Liothyronine Sodium (liothyronine)." AvKare Inc
- (2024) "Product Information. Eltroxin (levothyroxine)." Shire US Inc
- (2024) "Product Information. Armour Thyroid (thyroid desiccated)." A-S Medication Solutions
lidocaine dexAMETHasone
Applies to: dexamethasone / lidocaine and dexamethasone / lidocaine
Coadministration with inducers of CYP450 1A2 and/or 3A4 may decrease the plasma concentrations of lidocaine, which is primarily metabolized by these isoenzymes. In four healthy volunteers (2 smokers and 2 nonsmokers), administration of a single 400 mg oral dose of lidocaine following pretreatment with the CYP450 inducer phenobarbital (15 mg/day for 4 weeks, followed by 30 mg/day for 4 weeks) decreased lidocaine systemic exposure (AUC) by 37% and increased its oral clearance by 56% compared to administration of lidocaine alone. In another study, the mean bioavailability of a single 750 mg oral dose of lidocaine in six patients receiving chronic antiepileptic drug therapy (consisting of one or more of the following enzyme-inducing anticonvulsants: phenobarbital, primidone, phenytoin, carbamazepine) was approximately 2.5-fold lower than that reported for six healthy control subjects, while intrinsic clearance was nearly threefold higher. By contrast, the interaction was modest for lidocaine administered intravenously, suggesting induction of primarily hepatic first-pass rather than systemic metabolism of lidocaine. When a single 100 mg dose of lidocaine was given intravenously, mean lidocaine AUC was reduced by less than 10% and serum clearance increased by just 17% in the epileptic patients compared to controls. These changes were not statistically significant. Likewise, mean lidocaine AUC decreased by approximately 11% and plasma clearance increased by 15% when a single 50 mg intravenous dose of lidocaine was administered following pretreatment with the potent CYP450 inducer rifampin (600 mg/day for six days) in ten healthy, nonsmoking male volunteers. Another pharmacokinetic study found that cigarette smoke, an inducer of CYP450 1A2, reduced the bioavailability of lidocaine when administered orally, but had only minor effects on lidocaine administered intravenously. When 4 smokers and 5 non-smokers received 2 doses of lidocaine (100 mg IV followed by 100 mg orally after a 2-day washout period), the smoker's systemic exposure (AUC) of oral lidocaine was 68% lower than non-smokers. The AUC of IV lidocaine was only 9% lower in smokers compared with non-smokers. The clinical impact of smoking on lidocaine has not been studied, however, a loss of efficacy may occur.
References (4)
- Heinonen J, Takki S, Jarho L (1970) "Plasma lidocaine levels in patients treated with potential inducers of microsomal enzymes." Acta Anaesthesiol Scand, 14, p. 89-95
- Perucca E, Richens A (1979) "Reduction of oral bioavailability of lignocaine by induction of first pass metabolism in epileptic patients." Br J Clin Pharmacol, 8, p. 21-31
- Perucca E, Ruprah M, Richens A, Park BK, Betteridge DJ, Hedges AM (1981) "Effect of low-dose phenobarbitone on five indirect indices of hepatic microsomal enzyme induction and plasma lipoproteins in normal subjects." Br J Clin Pharmacol, 12, p. 592-6
- Reichel C, Skodra T, Nacke A, Spengler U, Sauerbruch T (1998) "The lignocaine metabolite (MEGX) liver function test and P-450 induction in humans." Br J Clin Pharmacol, 46, p. 535-9
Drug and food interactions
lidocaine food
Applies to: dexamethasone / lidocaine
MONITOR: Grapefruit and grapefruit juice may increase the plasma concentrations of lidocaine, which is primarily metabolized by the CYP450 3A4 and 1A2 isoenzymes to active metabolites (monoethylglycinexylidide (MEGX) and glycinexylidide). The proposed mechanism is inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall by certain compounds present in grapefruit. Inhibition of hepatic CYP450 3A4 may also contribute. The interaction has not been studied with grapefruit juice but has been reported with oral and/or intravenous lidocaine and potent CYP450 3A4 inhibitor, itraconazole, as well as moderate CYP450 3A4 inhibitor, erythromycin. A pharmacokinetic study of 9 healthy volunteers showed that the administration of lidocaine oral (1 mg/kg single dose) with itraconazole (200 mg daily) increased lidocaine systemic exposure (AUC) and peak plasma concentration (Cmax) by 75% and 55%, respectively. However, no changes were observed in the pharmacokinetics of the active metabolite MEGX. In the same study, when the moderate CYP450 3A4 inhibitor erythromycin (500 mg three times a day) was administered, lidocaine AUC and Cmax increased by 60% and 40%, respectively. By contrast, when intravenous lidocaine (1.5 mg/kg infusion over 60 minutes) was administered on the fourth day of treatment with itraconazole (200 mg once a day) no changes in lidocaine AUC or Cmax were observed. However, when lidocaine (1.5 mg/kg infusion over 60 minutes) was coadministered with erythromycin (500 mg three times a day) in the same study, the AUC and Cmax of the active metabolite MEGX significantly increased by 45-60% and 40%, respectively. The observed differences between oral and intravenous lidocaine when coadministered with CYP450 3A4 inhibitors may be attributed to inhibition of CYP450 3A4 in both the gastrointestinal tract and liver affecting oral lidocaine to a greater extent than intravenous lidocaine. In general, the effects of grapefruit products are concentration-, dose- and preparation-dependent, and can vary widely among brands. Certain preparations of grapefruit (e.g., high dose, double strength) have sometimes demonstrated potent inhibition of CYP450 3A4, while other preparations (e.g., low dose, single strength) have typically demonstrated moderate inhibition. While the clinical significance of this interaction is unknown, increased exposure to lidocaine may lead to serious and/or life-threatening reactions including respiratory depression, convulsions, bradycardia, hypotension, arrhythmias, and cardiovascular collapse.
MONITOR: Certain foods and behaviors that induce CYP450 1A2 may reduce the plasma concentrations of lidocaine. The proposed mechanism is induction of hepatic CYP450 1A2, one of the isoenzymes responsible for the metabolic clearance of lidocaine. Cigarette smoking is known to be a CYP450 1A2 inducer. In one pharmacokinetic study of 4 smokers and 5 non-smokers who received 2 doses of lidocaine (100 mg IV followed by 100 mg orally after a 2-day washout period), the smokers' systemic exposure (AUC) of oral lidocaine was 68% lower than non-smokers. The AUC of IV lidocaine was only 9% lower in smokers compared with non-smokers. Other CYP450 1A2 inducers include cruciferous vegetables (e.g., broccoli, brussels sprouts) and char-grilled meat. Therefore, eating large or variable amounts of these foods could also reduce lidocaine exposure. The clinical impact of smoking and/or the ingestion of foods that induce CYP450 1A2 on lidocaine have not been studied, however, a loss of efficacy may occur.
MANAGEMENT: Caution is recommended if lidocaine is to be used in combination with grapefruit and grapefruit juice. Monitoring for lidocaine toxicity and plasma lidocaine levels may also be advised, and the lidocaine dosage adjusted as necessary. Patients who smoke and/or consume cruciferous vegetables may be monitored for reduced lidocaine efficacy.
References (7)
- Huet PM, LeLorier J (1980) "Effects of smoking and chronic hepatitis B on lidocaine and indocyanine green kinetics" Clin Pharmacol Ther, 28, p. 208-15
- (2024) "Product Information. Lidocaine Hydrochloride (lidocaine)." Hospira Inc.
- (2015) "Product Information. Lidocaine Hydrochloride (lidocaine)." Hospira Healthcare Corporation
- (2022) "Product Information. Lidocaine Hydrochloride (lidocaine)." Hameln Pharma Ltd
- (2022) "Product Information. Xylocaine HCl (lidocaine)." Aspen Pharmacare Australia Pty Ltd
- Isohanni MH, Neuvonen PJ, Olkkola KT (2024) Effect of erythromycin and itraconazole on the pharmacokinetics of oral lignocaine https://pubmed.ncbi.nlm.nih.gov/10193676/
- Isohanni MH, Neuvonen PJ, Olkkola KT (2024) Effect of erythromycin and itraconazole on the pharmacokinetics of intravenous lignocaine https://pubmed.ncbi.nlm.nih.gov/9832299/
levothyroxine food
Applies to: levothyroxine
ADJUST DOSING INTERVAL: Consumption of certain foods as well as the timing of meals relative to dosing may affect the oral absorption of T4 thyroid hormone (i.e., levothyroxine). T4 oral absorption is increased by fasting and decreased by foods such as soybean flour (e.g., infant formula), cotton seed meal, walnuts, dietary fiber, calcium, and calcium fortified juices. Grapefruit or grapefruit products may delay the absorption of T4 thyroid hormone and reduce its bioavailability. The mechanism of this interaction is not fully understood.
MANAGEMENT: Some manufacturers recommend administering oral T4 as a single daily dose, on an empty stomach, one-half to one hour before breakfast. In general, oral preparations containing T4 thyroid hormone should be administered on a consistent schedule with regard to time of day and relation to meals to avoid large fluctuations in serum levels. Foods that may affect T4 absorption should be avoided within several hours of dosing if possible. Consult local guidelines for the administration of T4 in patients receiving enteral feeding.
References (3)
- (2002) "Product Information. Synthroid (levothyroxine)." Abbott Pharmaceutical
- (2022) "Product Information. Armour Thyroid (thyroid desiccated)." Forest Pharmaceuticals
- Wohlt PD, Zheng L, Gunderson S, Balzar SA, Johnson BD, Fish JT (2009) "Recommendations for the use of medications with continuous enteral nutrition." Am J Health Syst Pharm, 66, p. 1438-67
levothyroxine food
Applies to: levothyroxine
ADJUST DOSING INTERVAL: Concurrent administration of calcium-containing products may decrease the oral bioavailability of levothyroxine by one-third in some patients. Pharmacologic effects of levothyroxine may be reduced. The exact mechanism of interaction is unknown but may involve nonspecific adsorption of levothyroxine to calcium at acidic pH levels, resulting in an insoluble complex that is poorly absorbed from the gastrointestinal tract. In one study, 20 patients with hypothyroidism who were taking a stable long-term regimen of levothyroxine demonstrated modest but significant decreases in mean free and total thyroxine (T4) levels as well as a corresponding increase in mean thyrotropin (thyroid-stimulating hormone, or TSH) level following the addition of calcium carbonate (1200 mg/day of elemental calcium) for 3 months. Four patients had serum TSH levels that were higher than the normal range. Both T4 and TSH levels returned to near-baseline 2 months after discontinuation of calcium, which further supported the likelihood of an interaction. In addition, there have been case reports suggesting decreased efficacy of levothyroxine during calcium coadministration. It is not known whether this interaction occurs with other thyroid hormone preparations.
MANAGEMENT: Some experts recommend separating the times of administration of levothyroxine and calcium-containing preparations by at least 4 hours. Monitoring of serum TSH levels is recommended. Patients with gastrointestinal or malabsorption disorders may be at a greater risk of developing clinical or subclinical hypothyroidism due to this interaction.
References (4)
- Schneyer CR (1998) "Calcium carbonate and reduction of levothyroxine efficacy." JAMA, 279, p. 750
- Singh N, Singh PN, Hershman JM (2000) "Effect of calcium carbonate on the absorption of levothyroxine." JAMA, 283, p. 2822-5
- Csako G, McGriff NJ, Rotman-Pikielny P, Sarlis NJ, Pucino F (2001) "Exaggerated levothyroxine malabsorption due to calcium carbonate supplementation in gastrointestinal disorders." Ann Pharmacother, 35, p. 1578-83
- Neafsey PJ (2004) "Levothyroxine and calcium interaction: timing is everything." Home Healthc Nurse, 22, p. 338-9
lidocaine food
Applies to: dexamethasone / lidocaine
MONITOR: Smoking cessation may lead to elevated plasma concentrations and enhanced pharmacologic effects of drugs that are substrates of CYP450 1A2 (and possibly CYP450 1A1) and/or certain drugs with a narrow therapeutic index (e.g., flecainide, pentazocine). One proposed mechanism is related to the loss of CYP450 1A2 and 1A1 induction by polycyclic aromatic hydrocarbons in tobacco smoke; when smoking cessation agents are initiated and smoking stops, the metabolism of certain drugs may decrease leading to increased plasma concentrations. The mechanism by which smoking cessation affects narrow therapeutic index drugs that are not known substrates of CYP450 1A2 or 1A1 is unknown. The clinical significance of this interaction is unknown as clinical data are lacking.
MANAGEMENT: Until more information is available, caution is advisable if smoking cessation agents are used concomitantly with drugs that are substrates of CYP450 1A2 or 1A1 and/or those with a narrow therapeutic range. Patients receiving smoking cessation agents may require periodic dose adjustments and closer clinical and laboratory monitoring of medications that are substrates of CYP450 1A2 or 1A1.
References (4)
- (2024) "Product Information. Cytisine (cytisinicline)." Consilient Health Ltd
- jeong sh, Newcombe D, sheridan j, Tingle M (2015) "Pharmacokinetics of cytisine, an a4 b2 nicotinic receptor partial agonist, in healthy smokers following a single dose." Drug Test Anal, 7, p. 475-82
- Vaughan DP, Beckett AH, Robbie DS (1976) "The influence of smoking on the intersubject variation in pentazocine elimination." Br J Clin Pharmacol, 3, p. 279-83
- Zevin S, Benowitz NL (1999) "Drug interactions with tobacco smoking: an update" Clin Pharmacokinet, 36, p. 425-38
Therapeutic duplication warnings
No warnings were found for your selected drugs.
Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.
See also
Drug Interaction Classification
Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit. | |
Moderately clinically significant. Usually avoid combinations; use it only under special circumstances. | |
Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan. | |
No interaction information available. |
Further information
Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.
Check Interactions
To view an interaction report containing 4 (or more) medications, please sign in or create an account.
Save Interactions List
Sign in to your account to save this drug interaction list.