Drug Interactions between cyclosporine and RCK
This report displays the potential drug interactions for the following 2 drugs:
- cyclosporine
- RCK (clonidine/ketorolac/ropivacaine)
Interactions between your drugs
cloNIDine cycloSPORINE
Applies to: RCK (clonidine / ketorolac / ropivacaine) and cyclosporine
MONITOR: A single case has been reported in which whole-blood cyclosporine levels rose significantly and abruptly after the addition of clonidine and decreased after discontinuation of clonidine. Transdermal clonidine has also been associated with increases in cyclosporine levels. The mechanism is unknown. In addition, it has been suggested that clonidine may have a beneficial effect in preventing cyclosporine-induced nephrotoxicity. The mechanism is unknown and data have been conflicting.
MANAGEMENT: Until more information is available, frequent monitoring of whole-blood cyclosporine levels and renal function is recommended. Patients should be advised to notify their physician if they experience symptoms of possible cyclosporine toxicity, such as nausea, vomiting, diarrhea, abdominal pain, dizziness, fatigue, or headache.
References (2)
- Gilbert RD, Rahn D, Cassidy M (1995) "Interaction between clonidine and cyclosporine A." Nephron, 71, p. 105
- Luke J, Luke DR, Williams LA, LeMaistre CF, Yau JC (1990) "Prevention of cyclosporine-induced nephrotoxicity with transdermal clonidine." Clin Pharm, 9, p. 49-53
cycloSPORINE ketorolac
Applies to: cyclosporine and RCK (clonidine / ketorolac / ropivacaine)
MONITOR: Nonsteroidal anti-inflammatory drugs (NSAIDs) may potentiate the nephrotoxic effects of cyclosporine, especially if dehydration is present. The exact mechanism is unknown but is apparently unrelated to plasma cyclosporine levels. The interaction has been reported with diclofenac and sulindac. Data for other NSAIDs are not available, but a similar effect may be expected based on their common pharmacologic action.
MANAGEMENT: Renal function should be closely monitored in patients receiving concomitant therapy with cyclosporine and NSAIDs.
References (6)
- Sesin GP, O'Keefe E, Roberto P (1989) "Sulindac-induced elevation of serum cyclosporine concentration." Clin Pharm, 8, p. 445-6
- Branthwaite JP, Nicholls A (1991) "Cyclosporin and diclofenac interaction in rheumatoid arthritis." Lancet, 337, p. 252
- Harris KP, Jenkins D, Walls J (1988) "Nonsteroidal antiinflammatory drugs and cyclosporine." Transplantation, 46, p. 598-9
- Deray G, Le Hoang P, Aupetit B, Achour A, Rottembourg J, Baumelou A (1987) "Enhancement of cyclosporine A nephrotoxicity by diclofenac." Clin Nephrol, 27, p. 213-4
- Brouwers JRBJ, Desmet PAGM (1994) "Pharmacokinetic-pharmacodynamic drug interactions with nonsteroidal anti-inflammatory drugs." Clin Pharmacokinet, 27, p. 462-85
- (2001) "Product Information. Arthrotec (diclofenac-misoprostol)." Searle
cycloSPORINE ROPivacaine
Applies to: cyclosporine and RCK (clonidine / ketorolac / ropivacaine)
Coadministration with inhibitors of CYP450 3A4 may modestly increase the plasma concentrations of ropivacaine. Although ropivacaine is primarily metabolized by CYP450 1A2, it has been shown to undergo some metabolism via CYP450 3A4. In eight healthy volunteers, pretreatment with the 3A4 inhibitor erythromycin (500 mg three times a day for 6 days) was found to have only minor effects on the pharmacokinetics of a single dose of ropivacaine (0.6 mg/kg IV over 30 minutes) compared to placebo. However, in combination with the potent 1A2 inhibitor fluvoxamine (100 mg daily), erythromycin further increased the area under the plasma concentration-time curve (AUC) of ropivacaine by 50% compared to fluvoxamine alone, which increased the ropivacaine AUC by 3.7-fold. Fluvoxamine alone prolonged the elimination half-life of ropivacaine from 2.3 to 7.4 hours, while the addition of erythromycin further increased the half-life to 11.9 hours. In another study, pretreatment with the potent 3A4 inhibitor ketoconazole (100 mg twice daily for 2 days) decreased the mean total plasma clearance of ropivacaine (40 mg IV over 20 minutes) by just 15% in 12 healthy volunteers. Thus, it appears that CYP450 3A4 inhibitors may only have a significant effect on the pharmacokinetics of ropivacaine in the presence of a CYP450 1A2 inhibitor such as fluvoxamine, ciprofloxacin, or mexiletine.
References (7)
- Halldin MM, Bredberg E, Angelin B, Arvidsson T, Askemark Y, Elofsson S, Widman M (1996) "Metabolism and excretion of ropivacaine in humans." Drug Metab Dispos, 24, p. 962-8
- Oda Y, Furuichi K, Tanaka K, Hiroi T, Imaoka S, Asada A, Fujimori M, Funae Y (1995) "Metabolism of a new local anesthetic, ropivacaine, by human hepatic cytochrome P450." Anesthesiology, 82, p. 214-20
- (2001) "Product Information. Naropin (ropivacaine)." Astra-Zeneca Pharmaceuticals
- McClure JH (1996) "Ropivacaine." Br J Anaesth, 76, p. 300-7
- Ekstrom G, Gunnarsson UB (1996) "Ropivacaine, a new amide-type local anesthetic agent, is metabolized by cytochromes P450 1A and 3A in human liver microsomes." Drug Metab Dispos, 24, p. 955-61
- Arlander E, Ekstrom G, Alm C, Carrillo JA, Bielenstein M, Bottiger Y, Bertilsson L, Gustafsson LL (1998) "Metabolism of ropivacaine in humans is mediated by CYP1A2 and to a minor extent by CYP3A4: An interaction study with fluvoxamine and ketoconazole as in vivo inhibitors." Clin Pharmacol Ther, 64, p. 484-91
- Jokinen MJ, Ahonen J, Neuvonen PJ, Olkkola KT (2000) "The effect of erythromycin, fluvoxamine, and their combination on the pharmacokinetics of ropivacaine." Anesth Analg, 91, p. 1207-12
Drug and food interactions
cycloSPORINE food
Applies to: cyclosporine
GENERALLY AVOID: Administration with grapefruit juice (compared to water or orange juice) has been shown to increase blood concentrations of cyclosporine with a relatively high degree of interpatient variability. The mechanism is inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall by certain compounds present in grapefruits.
GENERALLY AVOID: Administration with red wine or purple grape juice may decrease blood concentrations of cyclosporine. In 12 healthy volunteers, 12 ounces total of a merlot consumed 15 minutes prior to and during cyclosporine administration (single 8 mg/kg dose of Sandimmune) decreased cyclosporine peak blood concentration (Cmax) and systemic exposure (AUC) by 38% and 30%, respectively, compared to water. The time to reach peak concentration (Tmax) doubled, and oral clearance increased 50%. Similarly, one study were 12 healthy patients were administered purple grape juice and a single dose of cyclosporine showed a 30% and a 36% decrease in cyclosporine systemic exposure (AUC) and peak blood concentration (Cmax), respectively. The exact mechanism of interaction is unknown but may involve decreased cyclosporine absorption.
MONITOR: Food has been found to have variable effects on the absorption of cyclosporine. There have been reports of impaired, unchanged, and enhanced absorption during administration with meals relative to the fasting state. The mechanisms are unclear. Some investigators found an association with the fat content of food. In one study, increased fat intake resulted in significantly increased cyclosporine bioavailability and clearance. However, the AUC and pharmacodynamics of cyclosporine were not significantly affected, thus clinical relevance of these findings may be minimal.
MANAGEMENT: Patients receiving cyclosporine therapy should be advised to either refrain from or avoid fluctuations in the consumption of grapefruits and grapefruit juice. Until more data are available, the consumption of red wine or purple grape juice should preferably be avoided or limited. All oral formulations of cyclosporine should be administered on a consistent schedule with regard to time of day and relation to meals so as to avoid large fluctuations in plasma drug levels.
References (13)
- Honcharik N, Yatscoff RW, Jeffery JR, Rush DN (1991) "The effect of meal composition on cyclosporine absorption." Transplantation, 52, p. 1087-9
- Ducharme MP, Provenzano R, Dehoornesmith M, Edwards DJ (1993) "Trough concentrations of cyclosporine in blood following administration with grapefruit juice." Br J Clin Pharmacol, 36, p. 457-9
- Bailey DG, Arnold JMO, Spence JD (1994) "Grapefruit juice and drugs - how significant is the interaction." Clin Pharmacokinet, 26, p. 91-8
- Hollander AAMJ, Vanrooij J, Lentjes EGWM, Arbouw F, Vanbree JB, Schoemaker RC, Vanes LA, Vanderwoude FJ, Cohen AF (1995) "The effect of grapefruit juice on cyclosporine and prednisone metabolism in transplant patients." Clin Pharmacol Ther, 57, p. 318-24
- (1995) "Grapefruit juice interactions with drugs." Med Lett Drugs Ther, 37, p. 73-4
- Tan KKC, Trull AK, Uttridge JA, Metcalfe S, Heyes CS, Facey S, Evans DB (1995) "Effect of dietary fat on the pharmacokinetics and pharmacodynamics of cyclosporine in kidney transplant recipients." Clin Pharmacol Ther, 57, p. 425-33
- Yee GC, Stanley DL, Pessa LJ, et al. (1995) "Effect of grrapefruit juice on blood cyclosporin concentration." Lancet, 345, p. 955-6
- Ducharme MP, Warbasse LH, Edwards DJ (1995) "Disposition of intravenous and oral cyclosporine after administration with grapefruit juice." Clin Pharmacol Ther, 57, p. 485-91
- Ioannidesdemos LL, Christophidis N, Ryan P, Angelis P, Liolios L, Mclean AJ (1997) "Dosing implications of a clinical interaction between grapefruit juice and cyclosporine and metabolite concentrations in patients with autoimmune diseases." J Rheumatol, 24, p. 49-54
- Min DI, Ku YM, Perry PJ, Ukah FO, Ashton K, Martin MF, Hunsicker LG (1996) "Effect of grapefruit juice on cyclosporine pharmacokinetics in renal transplant patients." Transplantation, 62, p. 123-5
- Bailey DG, Dresser GR, Kreeft JH, Munoz C, Freeman DJ, Bend JR (2000) "Grapefruit-felodipine interaction: Effect of unprocessed fruit and probable active ingredients." Clin Pharmacol Ther, 68, p. 468-77
- Tsunoda SM, Harris RZ, Christians U, et al. (2001) "Red wine decreases cyclosporine bioavailability." Clin Pharmacol Ther, 70, p. 462-7
- Oliveira-Freitas VL, Dalla Costa T, Manfro RC, Cruz LB, Schwartsmann G (2010) "Influence of purple grape juice in cyclosporine availability." J Ren Nutr, 20, p. 309-13
cloNIDine food
Applies to: RCK (clonidine / ketorolac / ropivacaine)
MONITOR: Many psychotherapeutic and CNS-active agents (e.g., anxiolytics, sedatives, hypnotics, antidepressants, antipsychotics, opioids, alcohol, muscle relaxants) exhibit hypotensive effects, especially during initiation of therapy and dose escalation. Coadministration with antihypertensives and other hypotensive agents, in particular vasodilators and alpha-blockers, may result in additive effects on blood pressure and orthostasis.
MANAGEMENT: Caution and close monitoring for development of hypotension is advised during coadministration of these agents. Some authorities recommend avoiding alcohol in patients receiving vasodilating antihypertensive drugs. Patients should be advised to avoid rising abruptly from a sitting or recumbent position and to notify their physician if they experience dizziness, lightheadedness, syncope, orthostasis, or tachycardia. Patients should also avoid driving or operating hazardous machinery until they know how the medications affect them.
References (10)
- Sternbach H (1991) "Fluoxetine-associated potentiation of calcium-channel blockers." J Clin Psychopharmacol, 11, p. 390-1
- Shook TL, Kirshenbaum JM, Hundley RF, Shorey JM, Lamas GA (1984) "Ethanol intoxication complicating intravenous nitroglycerin therapy." Ann Intern Med, 101, p. 498-9
- Feder R (1991) "Bradycardia and syncope induced by fluoxetine." J Clin Psychiatry, 52, p. 139
- Ellison JM, Milofsky JE, Ely E (1990) "Fluoxetine-induced bradycardia and syncope in two patients." J Clin Psychiatry, 51, p. 385-6
- Rodriguez de la Torre B, Dreher J, Malevany I, et al. (2001) "Serum levels and cardiovascular effects of tricyclic antidepressants and selective serotonin reuptake inhibitors in depressed patients." Ther Drug Monit, 23, p. 435-40
- Cerner Multum, Inc. "Australian Product Information."
- Pacher P, Kecskemeti V (2004) "Cardiovascular side effects of new antidepressants and antipsychotics: new drugs, old concerns?" Curr Pharm Des, 10, p. 2463-75
- Andrews C, Pinner G (1998) "Postural hypotension induced by paroxetine." BMJ, 316, p. 595
- (2023) "Product Information. Buprenorphine (buprenorphine)." G.L. Pharma UK Ltd
- (2023) "Product Information. Temgesic (buprenorphine)." Reckitt Benckiser Pty Ltd
ketorolac food
Applies to: RCK (clonidine / ketorolac / ropivacaine)
GENERALLY AVOID: The concurrent use of aspirin or nonsteroidal anti-inflammatory drugs (NSAIDs) and ethanol may lead to gastrointestinal (GI) blood loss. The mechanism may be due to a combined local effect as well as inhibition of prostaglandins leading to decreased integrity of the GI lining.
MANAGEMENT: Patients should be counseled on this potential interaction and advised to refrain from alcohol consumption while taking aspirin or NSAIDs.
References (1)
- (2002) "Product Information. Motrin (ibuprofen)." Pharmacia and Upjohn
Therapeutic duplication warnings
No warnings were found for your selected drugs.
Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.
See also
Drug Interaction Classification
Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit. | |
Moderately clinically significant. Usually avoid combinations; use it only under special circumstances. | |
Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan. | |
No interaction information available. |
Further information
Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.
Check Interactions
To view an interaction report containing 4 (or more) medications, please sign in or create an account.
Save Interactions List
Sign in to your account to save this drug interaction list.