Drug Interactions between cosibelimab and Dristan Cold Multi Symptom Formula
This report displays the potential drug interactions for the following 2 drugs:
- cosibelimab
- Dristan Cold Multi Symptom Formula (acetaminophen/chlorpheniramine/phenylephrine)
Interactions between your drugs
acetaminophen cosibelimab
Applies to: Dristan Cold Multi Symptom Formula (acetaminophen / chlorpheniramine / phenylephrine) and cosibelimab
MONITOR: Acetaminophen may reduce the efficacy of immune checkpoint inhibitors (ICIs) such as anti-cytotoxic T-lymphocyte-associated protein (CTLA)-4 monoclonal antibodies and/or inhibitors of programmed cell death-1 (PD-1)/programmed death ligand-1 (PD-L1). The mechanism of this interaction has not been fully elucidated, but may involve the ability of acetaminophen to impair proliferation of immune cells and T-cell mediated antitumor immunity, which has been observed in some studies. In the CheckMate 025 trial, patients with advanced renal cell carcinoma (n=297) and detectable serum levels of acetaminophen or its metabolite acetaminophen glucuronide were observed to have significantly poorer overall survival (OS) than patients without detectable acetaminophen levels at treatment onset. Similarly, it was noted during an analysis of plasma samples from patients (n=34) in a separate study who were treated with anti-PD-L1 therapies, with or without anti-CTLA-4 antibodies, that those with a detectable serum acetaminophen level had a significantly lower objective response rate than those without a detectable acetaminophen level (0% vs. 29.4%, respectively). Although OS was numerically shorter for patients with detectable acetaminophen levels compared to those without, this difference was not statistically significant in this study. Likewise, an analysis of plasma samples from patients enrolled in the PREMIS study (n=297) treated with anti-PD-L1 therapies, with or without anti-CTLA-4 antibodies, found that the presence of detectable acetaminophen levels was associated with significantly worse progression-free survival (PFS, median 2.63 months vs. 50.3 months) and OS (median 8.43 months vs. 14.93 months) when compared to those without detectable acetaminophen levels. Similarly, a retrospective single-center study in patients (n=225) with stage IV non-small cell lung cancer (NSCLC) who underwent first-line therapy with pembrolizumab (alone or in combination with platinum-based chemotherapy) or second-line therapy with pembrolizumab, nivolumab, or atezolizumab noted that patients who were exposed to high intensity acetaminophen (defined as therapeutic intake lasting >24 hours or a total intake >60 doses of 1000 mg) between 30 days before to 90 days after the first ICI infusion had an increased risk of treatment failure and a shorter duration of median PFS and OS. Multivariate analyses confirmed that high exposure to acetaminophen was independently associated with a reduction in both PFS and OS. Data are not available for every ICI in combination with acetaminophen in every clinical situation.
MANAGEMENT: Until more information is available, caution and clinical monitoring for reduced efficacy of immune checkpoint inhibitors (ICIs) may be advisable if they are administered with acetaminophen. One study suggests that only a pronounced and/or prolonged intake of acetaminophen is able to reduce the immune response to anti-PD-1/PD-L1 agents in patients with advanced NSCLC and suggests a more restrained and discontinuous intake of acetaminophen (<4 doses of 1000 mg/week) may help avoid worsening patient outcomes in this patient population.
References (3)
- Bessede A, Marabelle A, Guegan JP, et al. (2022) "Impact of acetaminophen on the efficacy of immunotherapy in cancer patients." Ann Oncol, 33, p. 909-15
- Nelli F, Virtuoso A, giannarelli d, et al. (2023) "Effects of acetaminophen exposure on outcomes of patients receiving immune checkpoint inhibitors for advanced non-small-cell lung cancer: a propensity score-matched analysis." Curr Oncol, 30, p. 8117-33
- Najeebullah, ali ma, Naveed R, Khatri G, Priya, hasan mm (2022) "Acetaminophen: a hazard to immunotherapy." Ann Med Surg (Lond), 80, p. 104272
Drug and food/lifestyle interactions
acetaminophen food/lifestyle
Applies to: Dristan Cold Multi Symptom Formula (acetaminophen / chlorpheniramine / phenylephrine)
GENERALLY AVOID: Chronic, excessive consumption of alcohol may increase the risk of acetaminophen-induced hepatotoxicity, which has included rare cases of fatal hepatitis and frank hepatic failure requiring liver transplantation. The proposed mechanism is induction of hepatic microsomal enzymes during chronic alcohol use, which may result in accelerated metabolism of acetaminophen and increased production of potentially hepatotoxic metabolites.
MANAGEMENT: In general, chronic alcoholics should avoid regular or excessive use of acetaminophen. Alternative analgesic/antipyretic therapy may be appropriate in patients who consume three or more alcoholic drinks per day. However, if acetaminophen is used, these patients should be cautioned not to exceed the recommended dosage (maximum 4 g/day in adults and children 12 years of age or older).
References (12)
- Kaysen GA, Pond SM, Roper MH, Menke DJ, Marrama MA (1985) "Combined hepatic and renal injury in alcoholics during therapeutic use of acetaminophen." Arch Intern Med, 145, p. 2019-23
- O'Dell JR, Zetterman RK, Burnett DA (1986) "Centrilobular hepatic fibrosis following acetaminophen-induced hepatic necrosis in an alcoholic." JAMA, 255, p. 2636-7
- Seeff LB, Cuccherini BA, Zimmerman HJ, Adler E, Benjamin SB (1986) "Acetaminophen hepatotoxicity in alcoholics." Ann Intern Med, 104, p. 399-404
- Thummel KE, Slattery JT, Nelson SD (1988) "Mechanism by which ethanol diminishes the hepatotoxicity of acetaminophen." J Pharmacol Exp Ther, 245, p. 129-36
- McClain CJ, Kromhout JP, Peterson FJ, Holtzman JL (1980) "Potentiation of acetaminophen hepatotoxicity by alcohol." JAMA, 244, p. 251-3
- Kartsonis A, Reddy KR, Schiff ER (1986) "Alcohol, acetaminophen, and hepatic necrosis." Ann Intern Med, 105, p. 138-9
- Prescott LF, Critchley JA (1983) "Drug interactions affecting analgesic toxicity." Am J Med, 75, p. 113-6
- (2002) "Product Information. Tylenol (acetaminophen)." McNeil Pharmaceutical
- Whitcomb DC, Block GD (1994) "Association of acetaminopphen hepatotoxicity with fasting and ethanol use." JAMA, 272, p. 1845-50
- Bonkovsky HL (1995) "Acetaminophen hepatotoxicity, fasting, and ethanol." JAMA, 274, p. 301
- Nelson EB, Temple AR (1995) "Acetaminophen hepatotoxicity, fasting, and ethanol." JAMA, 274, p. 301
- Zimmerman HJ, Maddrey WC (1995) "Acetaminophen (paracetamol) hepatotoxicity with regular intake of alcohol: analysis of instances of therapeutic misadventure." Hepatology, 22, p. 767-73
chlorpheniramine food/lifestyle
Applies to: Dristan Cold Multi Symptom Formula (acetaminophen / chlorpheniramine / phenylephrine)
GENERALLY AVOID: Alcohol may potentiate some of the pharmacologic effects of CNS-active agents. Use in combination may result in additive central nervous system depression and/or impairment of judgment, thinking, and psychomotor skills.
MANAGEMENT: Patients receiving CNS-active agents should be warned of this interaction and advised to avoid or limit consumption of alcohol. Ambulatory patients should be counseled to avoid hazardous activities requiring complete mental alertness and motor coordination until they know how these agents affect them, and to notify their physician if they experience excessive or prolonged CNS effects that interfere with their normal activities.
References (4)
- Warrington SJ, Ankier SI, Turner P (1986) "Evaluation of possible interactions between ethanol and trazodone or amitriptyline." Neuropsychobiology, 15, p. 31-7
- Gilman AG, eds., Nies AS, Rall TW, Taylor P (1990) "Goodman and Gilman's the Pharmacological Basis of Therapeutics." New York, NY: Pergamon Press Inc.
- (2012) "Product Information. Fycompa (perampanel)." Eisai Inc
- (2015) "Product Information. Rexulti (brexpiprazole)." Otsuka American Pharmaceuticals Inc
phenylephrine food/lifestyle
Applies to: Dristan Cold Multi Symptom Formula (acetaminophen / chlorpheniramine / phenylephrine)
MONITOR: Coadministration of two or more sympathomimetic agents may increase the risk of adverse effects such as nervousness, irritability, and increased heart rate. Central nervous system (CNS) stimulants, particularly amphetamines, can potentiate the adrenergic response to vasopressors and other sympathomimetic agents. Additive increases in blood pressure and heart rate may occur due to enhanced peripheral sympathetic activity.
MANAGEMENT: Caution is advised if two or more sympathomimetic agents are coadministered. Pulse and blood pressure should be closely monitored.
References (7)
- Rosenblatt JE, Lake CR, van Kammen DP, Ziegler MG, Bunney WE Jr (1979) "Interactions of amphetamine, pimozide, and lithium on plasma norepineophrine and dopamine-beta-hydroxylase in schizophrenic patients." Psychiatry Res, 1, p. 45-52
- Cavanaugh JH, Griffith JD, Oates JA (1970) "Effect of amphetamine on the pressor response to tyramine: formation of p-hydroxynorephedrine from amphetamine in man." Clin Pharmacol Ther, 11, p. 656
- (2001) "Product Information. Adderall (amphetamine-dextroamphetamine)." Shire Richwood Pharmaceutical Company Inc
- (2001) "Product Information. Tenuate (diethylpropion)." Aventis Pharmaceuticals
- (2001) "Product Information. Sanorex (mazindol)." Novartis Pharmaceuticals
- (2001) "Product Information. Focalin (dexmethylphenidate)." Mikart Inc
- (2002) "Product Information. Strattera (atomoxetine)." Lilly, Eli and Company
acetaminophen food/lifestyle
Applies to: Dristan Cold Multi Symptom Formula (acetaminophen / chlorpheniramine / phenylephrine)
MONITOR: Smoking cessation may lead to elevated plasma concentrations and enhanced pharmacologic effects of drugs that are substrates of CYP450 1A2 (and possibly CYP450 1A1) and/or certain drugs with a narrow therapeutic index (e.g., flecainide, pentazocine). One proposed mechanism is related to the loss of CYP450 1A2 and 1A1 induction by polycyclic aromatic hydrocarbons in tobacco smoke; when smoking cessation agents are initiated and smoking stops, the metabolism of certain drugs may decrease leading to increased plasma concentrations. The mechanism by which smoking cessation affects narrow therapeutic index drugs that are not known substrates of CYP450 1A2 or 1A1 is unknown. The clinical significance of this interaction is unknown as clinical data are lacking.
MANAGEMENT: Until more information is available, caution is advisable if smoking cessation agents are used concomitantly with drugs that are substrates of CYP450 1A2 or 1A1 and/or those with a narrow therapeutic range. Patients receiving smoking cessation agents may require periodic dose adjustments and closer clinical and laboratory monitoring of medications that are substrates of CYP450 1A2 or 1A1.
References (4)
- (2024) "Product Information. Cytisine (cytisinicline)." Consilient Health Ltd
- jeong sh, Newcombe D, sheridan j, Tingle M (2015) "Pharmacokinetics of cytisine, an a4 b2 nicotinic receptor partial agonist, in healthy smokers following a single dose." Drug Test Anal, 7, p. 475-82
- Vaughan DP, Beckett AH, Robbie DS (1976) "The influence of smoking on the intersubject variation in pentazocine elimination." Br J Clin Pharmacol, 3, p. 279-83
- Zevin S, Benowitz NL (1999) "Drug interactions with tobacco smoking: an update" Clin Pharmacokinet, 36, p. 425-38
Disease interactions
acetaminophen Alcoholism
Applies to: Alcoholism
Chronic alcohol abusers may be at increased risk of hepatotoxicity during treatment with acetaminophen (APAP). Severe liver injury, including cases of acute liver failure resulting in liver transplant and death, has been reported in patients using acetaminophen. Therapy with acetaminophen should be administered cautiously, if at all, in patients who consume three or more alcoholic drinks a day. In general, patients should avoid drinking alcohol while taking acetaminophen-containing medications. Patients should be warned not to exceed the maximum recommended total daily dosage of acetaminophen (4 g/day in adults and children 12 years of age or older), and to read all prescription and over-the-counter medication labels to ensure they are not taking multiple acetaminophen-containing products, or check with a healthcare professional if they are unsure. They should also be advised to seek medical attention if they experience signs and symptoms of liver injury such as fever, rash, anorexia, nausea, vomiting, fatigue, right upper quadrant pain, dark urine, and jaundice.
phenylephrine Cardiovascular Disease
Applies to: Cardiovascular Disease
Sympathomimetic agents may cause adverse cardiovascular effects, particularly when used in high dosages and/or in susceptible patients. In cardiac tissues, these agents may produce positive chronotropic and inotropic effects via stimulation of beta- 1 adrenergic receptors. Cardiac output, oxygen consumption, and the work of the heart may be increased. In the peripheral vasculature, vasoconstriction may occur via stimulation of alpha-1 adrenergic receptors. Palpitations, tachycardia, arrhythmia, hypertension, reflex bradycardia, coronary occlusion, cerebral vasculitis, myocardial infarction, cardiac arrest, and death have been reported. Some of these agents, particularly ephedra alkaloids (ephedrine, ma huang, phenylpropanolamine), may also predispose patients to hemorrhagic and ischemic stroke. Therapy with sympathomimetic agents should generally be avoided or administered cautiously in patients with sensitivity to sympathomimetic amines, hyperthyroidism, or underlying cardiovascular or cerebrovascular disorders. These agents should not be used in patients with severe coronary artery disease or severe/uncontrolled hypertension.
phenylephrine Cerebrovascular Insufficiency
Applies to: Cerebrovascular Insufficiency
Sympathomimetic agents may cause adverse cardiovascular effects, particularly when used in high dosages and/or in susceptible patients. In cardiac tissues, these agents may produce positive chronotropic and inotropic effects via stimulation of beta- 1 adrenergic receptors. Cardiac output, oxygen consumption, and the work of the heart may be increased. In the peripheral vasculature, vasoconstriction may occur via stimulation of alpha-1 adrenergic receptors. Palpitations, tachycardia, arrhythmia, hypertension, reflex bradycardia, coronary occlusion, cerebral vasculitis, myocardial infarction, cardiac arrest, and death have been reported. Some of these agents, particularly ephedra alkaloids (ephedrine, ma huang, phenylpropanolamine), may also predispose patients to hemorrhagic and ischemic stroke. Therapy with sympathomimetic agents should generally be avoided or administered cautiously in patients with sensitivity to sympathomimetic amines, hyperthyroidism, or underlying cardiovascular or cerebrovascular disorders. These agents should not be used in patients with severe coronary artery disease or severe/uncontrolled hypertension.
acetaminophen Dehydration
Applies to: Dehydration
Acetaminophen is contraindicated in patients with severe hepatic impairment or severe active liver disease. Patients with hepatic impairment may be at increased risk of toxicity. Severe liver injury, including cases of acute liver failure and death, have been reported in patients using this drug. Clinical monitoring of hepatic function is recommended. Caution is advised if using acetaminophen in patients with chronic malnutrition or severe hypovolemia. Instruct patients to avoid drinking alcohol while taking acetaminophen-containing medications. Patients should be warned not to exceed the maximum recommended total daily dosage of acetaminophen (4 g/day in adults and children 12 years of age or older), and to read all prescription and over-the-counter medication labels to ensure they are not taking multiple acetaminophen-containing products, or check with a healthcare professional if they are unsure.
phenylephrine Hyperthyroidism
Applies to: Hyperthyroidism
Sympathomimetic agents may cause adverse cardiovascular effects, particularly when used in high dosages and/or in susceptible patients. In cardiac tissues, these agents may produce positive chronotropic and inotropic effects via stimulation of beta- 1 adrenergic receptors. Cardiac output, oxygen consumption, and the work of the heart may be increased. In the peripheral vasculature, vasoconstriction may occur via stimulation of alpha-1 adrenergic receptors. Palpitations, tachycardia, arrhythmia, hypertension, reflex bradycardia, coronary occlusion, cerebral vasculitis, myocardial infarction, cardiac arrest, and death have been reported. Some of these agents, particularly ephedra alkaloids (ephedrine, ma huang, phenylpropanolamine), may also predispose patients to hemorrhagic and ischemic stroke. Therapy with sympathomimetic agents should generally be avoided or administered cautiously in patients with sensitivity to sympathomimetic amines, hyperthyroidism, or underlying cardiovascular or cerebrovascular disorders. These agents should not be used in patients with severe coronary artery disease or severe/uncontrolled hypertension.
acetaminophen Liver Disease
Applies to: Liver Disease
Acetaminophen is contraindicated in patients with severe hepatic impairment or severe active liver disease. Patients with hepatic impairment may be at increased risk of toxicity. Severe liver injury, including cases of acute liver failure and death, have been reported in patients using this drug. Clinical monitoring of hepatic function is recommended. Caution is advised if using acetaminophen in patients with chronic malnutrition or severe hypovolemia. Instruct patients to avoid drinking alcohol while taking acetaminophen-containing medications. Patients should be warned not to exceed the maximum recommended total daily dosage of acetaminophen (4 g/day in adults and children 12 years of age or older), and to read all prescription and over-the-counter medication labels to ensure they are not taking multiple acetaminophen-containing products, or check with a healthcare professional if they are unsure.
acetaminophen Malnourished
Applies to: Malnourished
Acetaminophen is contraindicated in patients with severe hepatic impairment or severe active liver disease. Patients with hepatic impairment may be at increased risk of toxicity. Severe liver injury, including cases of acute liver failure and death, have been reported in patients using this drug. Clinical monitoring of hepatic function is recommended. Caution is advised if using acetaminophen in patients with chronic malnutrition or severe hypovolemia. Instruct patients to avoid drinking alcohol while taking acetaminophen-containing medications. Patients should be warned not to exceed the maximum recommended total daily dosage of acetaminophen (4 g/day in adults and children 12 years of age or older), and to read all prescription and over-the-counter medication labels to ensure they are not taking multiple acetaminophen-containing products, or check with a healthcare professional if they are unsure.
phenylephrine Pheochromocytoma
Applies to: Pheochromocytoma
Sympathomimetic agents may cause adverse cardiovascular effects, particularly when used in high dosages and/or in susceptible patients. In cardiac tissues, these agents may produce positive chronotropic and inotropic effects via stimulation of beta- 1 adrenergic receptors. Cardiac output, oxygen consumption, and the work of the heart may be increased. In the peripheral vasculature, vasoconstriction may occur via stimulation of alpha-1 adrenergic receptors. Palpitations, tachycardia, arrhythmia, hypertension, reflex bradycardia, coronary occlusion, cerebral vasculitis, myocardial infarction, cardiac arrest, and death have been reported. Some of these agents, particularly ephedra alkaloids (ephedrine, ma huang, phenylpropanolamine), may also predispose patients to hemorrhagic and ischemic stroke. Therapy with sympathomimetic agents should generally be avoided or administered cautiously in patients with sensitivity to sympathomimetic amines, hyperthyroidism, or underlying cardiovascular or cerebrovascular disorders. These agents should not be used in patients with severe coronary artery disease or severe/uncontrolled hypertension.
chlorpheniramine Asthma
Applies to: Asthma
It has been suggested that the anticholinergic effect of antihistamines may reduce the volume and cause thickening of bronchial secretions, resulting in obstruction of respiratory tract. Some manufacturers and clinicians recommend that therapy with antihistamines be administered cautiously in patients with asthma or chronic obstructive pulmonary disease.
phenylephrine Benign Prostatic Hyperplasia
Applies to: Benign Prostatic Hyperplasia
Sympathomimetic agents may cause or worsen urinary difficulty in patients with prostate enlargement due to smooth muscle contraction in the bladder neck via stimulation of alpha-1 adrenergic receptors. Therapy with sympathomimetic agents should be administered cautiously in patients with hypertrophy or neoplasm of the prostate.
chlorpheniramine Cardiovascular Disease
Applies to: Cardiovascular Disease
Antihistamines may infrequently cause cardiovascular adverse effects related to their anticholinergic and local anesthetic (quinidine-like) activities. Tachycardia, palpitation, ECG changes, arrhythmias, hypotension, and hypertension have been reported. Although these effects are uncommon and usually limited to overdosage situations, the manufacturers and some clinicians recommend that therapy with antihistamines be administered cautiously in patients with cardiovascular disease, hypertension, and/or hyperthyroidism.
chlorpheniramine Chronic Obstructive Pulmonary Disease
Applies to: Chronic Obstructive Pulmonary Disease
It has been suggested that the anticholinergic effect of antihistamines may reduce the volume and cause thickening of bronchial secretions, resulting in obstruction of respiratory tract. Some manufacturers and clinicians recommend that therapy with antihistamines be administered cautiously in patients with asthma or chronic obstructive pulmonary disease.
phenylephrine Diabetes Mellitus
Applies to: Diabetes Mellitus
Sympathomimetic agents may cause increases in blood glucose concentrations. These effects are usually transient and slight but may be significant with dosages higher than those normally recommended. Therapy with sympathomimetic agents should be administered cautiously in patients with diabetes mellitus. Closer monitoring of blood glucose concentrations may be appropriate.
chlorpheniramine Gastrointestinal Obstruction
Applies to: Gastrointestinal Obstruction
Antihistamines often have anticholinergic activity, to which elderly patients are particularly sensitive. Therapy with antihistamines should be administered cautiously, if at all, in patients with preexisting conditions that are likely to be exacerbated by anticholinergic activity, such as urinary retention or obstruction; angle-closure glaucoma, untreated intraocular hypertension, or uncontrolled primary open-angle glaucoma; and gastrointestinal obstructive disorders. Conventional, first-generation antihistamines such as the ethanolamines (bromodiphenhydramine, carbinoxamine, clemastine, dimenhydrinate, diphenhydramine, doxylamine, phenyltoloxamine) tend to exhibit substantial anticholinergic effects. In contrast, the newer, relatively nonsedating antihistamines (e.g., cetirizine, fexofenadine, loratadine) reportedly have low to minimal anticholinergic activity at normally recommended dosages and may be appropriate alternatives.
chlorpheniramine Glaucoma/Intraocular Hypertension
Applies to: Glaucoma / Intraocular Hypertension
Antihistamines often have anticholinergic activity, to which elderly patients are particularly sensitive. Therapy with antihistamines should be administered cautiously, if at all, in patients with preexisting conditions that are likely to be exacerbated by anticholinergic activity, such as urinary retention or obstruction; angle-closure glaucoma, untreated intraocular hypertension, or uncontrolled primary open-angle glaucoma; and gastrointestinal obstructive disorders. Conventional, first-generation antihistamines such as the ethanolamines (bromodiphenhydramine, carbinoxamine, clemastine, dimenhydrinate, diphenhydramine, doxylamine, phenyltoloxamine) tend to exhibit substantial anticholinergic effects. In contrast, the newer, relatively nonsedating antihistamines (e.g., cetirizine, fexofenadine, loratadine) reportedly have low to minimal anticholinergic activity at normally recommended dosages and may be appropriate alternatives.
phenylephrine Glaucoma/Intraocular Hypertension
Applies to: Glaucoma / Intraocular Hypertension
Sympathomimetic agents can induce transient mydriasis via stimulation of alpha-1 adrenergic receptors. In patients with anatomically narrow angles or narrow-angle glaucoma, pupillary dilation can provoke an acute attack. In patients with other forms of glaucoma, mydriasis may occasionally increase intraocular pressure. Therapy with sympathomimetic agents should be administered cautiously in patients with or predisposed to glaucoma, particularly narrow-angle glaucoma.
chlorpheniramine Hyperthyroidism
Applies to: Hyperthyroidism
Antihistamines may infrequently cause cardiovascular adverse effects related to their anticholinergic and local anesthetic (quinidine-like) activities. Tachycardia, palpitation, ECG changes, arrhythmias, hypotension, and hypertension have been reported. Although these effects are uncommon and usually limited to overdosage situations, the manufacturers and some clinicians recommend that therapy with antihistamines be administered cautiously in patients with cardiovascular disease, hypertension, and/or hyperthyroidism.
chlorpheniramine Hypotension
Applies to: Hypotension
Antihistamines may infrequently cause cardiovascular adverse effects related to their anticholinergic and local anesthetic (quinidine-like) activities. Tachycardia, palpitation, ECG changes, arrhythmias, hypotension, and hypertension have been reported. Although these effects are uncommon and usually limited to overdosage situations, the manufacturers and some clinicians recommend that therapy with antihistamines be administered cautiously in patients with cardiovascular disease, hypertension, and/or hyperthyroidism.
chlorpheniramine Liver Disease
Applies to: Liver Disease
Limited pharmacokinetic data are available for the older, first-generation antihistamines. Many appear to be primarily metabolized by the liver, and both parent drugs and metabolites are excreted in the urine. Patients with renal and/or liver disease may be at greater risk for adverse effects from antihistamines due to drug and metabolite accumulation. Therapy with antihistamines should be administered cautiously in such patients. Lower initial dosages may be appropriate.
acetaminophen Phenylketonuria
Applies to: Phenylketonuria
Several oral acetaminophen and acetaminophen-combination products, particularly flavored chewable tablets, contain the artificial sweetener, aspartame (NutraSweet). Aspartame is converted to phenylalanine in the gastrointestinal tract following ingestion. Chewable and effervescent formulations of acetaminophen products may also contain phenylalanine. The aspartame/phenylalanine content should be considered when these products are used in patients who must restrict their intake of phenylalanine (i.e. phenylketonurics).
phenylephrine Prostate Tumor
Applies to: Prostate Tumor
Sympathomimetic agents may cause or worsen urinary difficulty in patients with prostate enlargement due to smooth muscle contraction in the bladder neck via stimulation of alpha-1 adrenergic receptors. Therapy with sympathomimetic agents should be administered cautiously in patients with hypertrophy or neoplasm of the prostate.
chlorpheniramine Renal Dysfunction
Applies to: Renal Dysfunction
Limited pharmacokinetic data are available for the older, first-generation antihistamines. Many appear to be primarily metabolized by the liver, and both parent drugs and metabolites are excreted in the urine. Patients with renal and/or liver disease may be at greater risk for adverse effects from antihistamines due to drug and metabolite accumulation. Therapy with antihistamines should be administered cautiously in such patients. Lower initial dosages may be appropriate.
chlorpheniramine Urinary Retention
Applies to: Urinary Retention
Antihistamines often have anticholinergic activity, to which elderly patients are particularly sensitive. Therapy with antihistamines should be administered cautiously, if at all, in patients with preexisting conditions that are likely to be exacerbated by anticholinergic activity, such as urinary retention or obstruction; angle-closure glaucoma, untreated intraocular hypertension, or uncontrolled primary open-angle glaucoma; and gastrointestinal obstructive disorders. Conventional, first-generation antihistamines such as the ethanolamines (bromodiphenhydramine, carbinoxamine, clemastine, dimenhydrinate, diphenhydramine, doxylamine, phenyltoloxamine) tend to exhibit substantial anticholinergic effects. In contrast, the newer, relatively nonsedating antihistamines (e.g., cetirizine, fexofenadine, loratadine) reportedly have low to minimal anticholinergic activity at normally recommended dosages and may be appropriate alternatives.
Therapeutic duplication warnings
No warnings were found for your selected drugs.
Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.
See also
Drug Interaction Classification
| Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit. | |
| Moderately clinically significant. Usually avoid combinations; use it only under special circumstances. | |
| Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan. | |
| No interaction information available. |
Further information
Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.