Skip to main content

Drug Interactions between cholecalciferol / lactobacillus reuteri and decitabine

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Moderate

decitabine lactobacillus reuteri

Applies to: decitabine and cholecalciferol / lactobacillus reuteri

MONITOR: Probiotic use during immunosuppressant or intense antineoplastic therapy may theoretically increase the risk of infections from the live microorganisms contained in probiotic products. Patients may be immunosuppressed if they have recently received or are receiving alkylating agents, antimetabolites, radiation, some antirheumatic agents, high dosages of corticosteroids or adrenocorticotropic agents, or long-term topical or inhaled corticosteroids. Although probiotics are generally considered safe, with minimal to low pathogenicity, infections such as bacteremia and endocarditis with various strains commonly found in probiotics (e.g., lactobacilli, bifidobacteria, Bacillus subtilis) have been rarely reported, primarily in critically ill patients or patients with significant underlying medical conditions such as malignancy, organ transplantation, AIDS, valvular heart disease, diabetes mellitus, recent surgery, or compromised immune system. Lactobacillus bacteremia has also been reported following endoscopy. In addition, cases of lactobacillus pneumonia and liver abscess, as well as Saccharomyces fungemia, pneumonia, liver abscess, peritonitis and vaginitis, have been described in the medical literature.

MANAGEMENT: Caution is advised when probiotics are used during immunosuppressant or intense antineoplastic therapy. It may be advisable to avoid using probiotics, particularly products containing saccharomyces boulardii, in patients who are significantly immunosuppressed unless benefits are anticipated to outweigh the potential risk of infection.

References (12)
  1. Salminen MK, Rautelin H, Tynkkynen S, et al. (2004) "Lactobacillus bacteremia, clinical significance, and patient outcome, with special focus on probiotic L. rhamnosus GG." Clin Infect Dis, 38, p. 62-9
  2. Salminen MK, Tynkkynen S, Rautelin H, et al. (2002) "Lactobacillus bacteremia during a rapid increase in probiotic use of Lactobacillus rhamnosus GG in Finland." Clin Infect Dis, 35, p. 1155-60
  3. Rautio M, Jousimies-Somer H, Kauma H, et al. (1999) "Liver abscess due to a Lactobacillus rhamnosus strain indistinguishable from L. rhamnosus strain GG." Clin Infect Dis, 28, p. 1159-60
  4. Schlegel L, Lemerle S, Geslin P (1998) "Lactobacillus species as opportunistic pathogens in immunocompromised patients." Eur J Clin Microbiol Infect Dis, 17, p. 887-8
  5. Saxelin M, Chuang NH, Chassy B, et al. (1996) "Lactobacilli and bacteremia in southern Finland, 1989-1992" Clin Infect Dis, 22, p. 564-6
  6. Husni RN, Gordon SM, Washington JA, Longworth DL (1997) "Lactobacillus bacteremia and endocarditis: review of 45 cases." Clin Infect Dis, 25, p. 1048-55
  7. Oggioni MR, Pozzi G, Valensin PE, Galieni P, Bigazzi C (1998) "Recurrent septicemia in an immunocompromised patient due to probiotic strains of Bacillus subtilis." J Clin Microbiol, 36, p. 325-6
  8. Mackay AD, Taylor MB, Kibbler CC, Hamilton-Miller JM (1999) "Lactobacillus endocarditis caused by a probiotic organism." Clin Microbiol Infect, 5, p. 290-2
  9. Borriello SP, Hammes WP, Holzapfel W, et al. (2003) "Safety of probiotics that contain lactobacilli or bifidobacteria." Clin Infect Dis, 36, p. 775-80
  10. Lolis N, Veldekis D, Moraitou H, et al. (2008) "Saccharomyces boulardii fungaemia in an intensive care unit patient treated with caspofungin." Crit Care, 12, epub
  11. Boyle RJ, Robins-Browne RM, Tang ML (2006) "Probiotic use in clinical practice: what are the risks?" Am J Clin Nutr, 83, p. 1256-64
  12. Pruccoli G, Silvestro E, Napoleone CP, Aidala E, Garazzino S, Scolfaro C (2024) Are probiotics safe? Bifidobacterium bacteremia in a child with severe heart failure. https://www.researchgate.net/publication/333853508_Are_probiotics_safe_Bifidobacterium_bacteremia_in_a_child_with_severe_heart_failure

Drug and food interactions

Moderate

cholecalciferol food

Applies to: cholecalciferol / lactobacillus reuteri

MONITOR: Additive effects and possible toxicity (e.g., hypercalcemia, hypercalciuria, and/or hyperphosphatemia) may occur when patients using vitamin D and/or vitamin D analogs ingest a diet high in vitamin D, calcium, and/or phosphorus. The biologically active forms of vitamin D stimulate intestinal absorption of calcium and phosphorus. This may be helpful in patients with hypocalcemia and/or hypophosphatemia. However, sudden increases in calcium or phosphorus consumption due to dietary changes could precipitate hypercalcemia and/or hyperphosphatemia. Patients with certain disease states, such as impaired renal function, may be more susceptible to toxic side effects like ectopic calcification. On the other hand, if dietary calcium is inadequate for the body's needs, the active form of vitamin D will stimulate osteoclasts to pull calcium from the bones. This may be detrimental in a patient with reduced bone density.

MANAGEMENT: Given the narrow therapeutic index of vitamin D and vitamin D analogs, the amounts of calcium, phosphorus, and vitamin D present in the patient's diet may need to be taken into consideration. Specific dietary guidance should be discussed with the patient and regular lab work should be monitored as indicated. Calcium, phosphorus, and vitamin D levels should be kept within the desired ranges, which may differ depending on the patient's condition. Patients should also be counseled on the signs and symptoms of hypervitaminosis D, hypercalcemia, and/or hyperphosphatemia.

References (10)
  1. (2023) "Product Information. Drisdol (ergocalciferol)." Validus Pharmaceuticals LLC
  2. (2024) "Product Information. Fultium-D3 (colecalciferol)." Internis Pharmaceuticals Ltd
  3. (2024) "Product Information. Ostelin Specialist Range Vitamin D (colecalciferol)." Sanofi-Aventis Healthcare Pty Ltd T/A Sanofi Consumer Healthcare
  4. (2021) "Product Information. Rocaltrol (calcitriol)." Atnahs Pharma UK Ltd
  5. (2019) "Product Information. Calcitriol (calcitriol)." Strides Pharma Inc.
  6. (2024) "Product Information. Calcitriol (GenRx) (calcitriol)." Apotex Pty Ltd
  7. (2022) "Product Information. Ergocalciferol (ergocalciferol)." RPH Pharmaceuticals AB
  8. (2020) "Product Information. Sandoz D (cholecalciferol)." Sandoz Canada Incorporated
  9. Fischer V, Haffner-Luntzer M, Prystaz K, et al. (2024) Calcium and vitamin-D deficiency marginally impairs fracture healing but aggravates posttraumatic bone loss in osteoporotic mice. https://www.nature.com/articles/s41598-017-07511-2
  10. National Institutes of Health Office of Dietary Supplements (2024) Vitamin D https://ods.od.nih.gov/factsheets/VitaminD-HealthProfessional/#h37

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.