Skip to main content

Drug Interactions between chlorpheniramine / guaifenesin / phenylephrine and timolol ophthalmic

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Moderate

chlorpheniramine timolol ophthalmic

Applies to: chlorpheniramine / guaifenesin / phenylephrine and timolol ophthalmic

MONITOR: Coadministration with inhibitors of CYP450 2D6 may increase the systemic effects of topically administered timolol, which is metabolized by the isoenzyme. Following ocular administration, timolol is systemically absorbed and can reach plasma levels associated with adverse beta-adrenergic blocking effects such as bronchospasm, depression, bradycardia, and hypotension. The risk may be increased if clearance of the drug is significantly diminished by concomitant CYP450 2D6 inhibitors. In one case report, a 70-year-old man experienced dizziness secondary to sinus bradycardia after 12 weeks of treatment with a 0.5% timolol eye drop while also taking quinidine sulfate 500 mg three times a day. The symptoms subsided and sinus rhythm returned to normal a day after discontinuation of both drugs. However, symptoms returned within 30 hours after restarting both drugs a month later. Quinidine was discontinued, and the patient did not experience further problems. In a study of 13 healthy volunteers, extensive metabolizers of CYP450 2D6 administered quinidine (50 mg single oral dose) 30 minutes before 0.5% timolol eye drop (2 drops in each nostril) demonstrated significantly greater reductions in exercise heart rate and had higher plasma timolol concentrations than when given timolol alone. The changes resulted in values that were similar to those observed in poor metabolizers given the timolol eye drop without quinidine. In another study, 12 healthy volunteers given cimetidine (400 mg orally twice a day for 7 doses) and 0.5% timolol eye drop (0.05 mL in each eye 30 minutes after last dose of cimetidine) demonstrated additional reductions in resting heart rate and intraocular pressure relative to administration of the timolol eye drop alone, although there were no additional reductions of exercise heart rate or systolic blood pressure (at rest or after exercise) compared to timolol alone.

MANAGEMENT: Patients should be monitored for systemic beta-adrenergic blocking effects of topical timolol during coadministration with CYP450 2D6 inhibitors such as cimetidine, quinidine, and certain selective serotonin reuptake inhibitors. Particular caution is warranted in elderly patients, since they are generally more susceptible to adverse effects of topically administered beta blockers.

References (7)
  1. Dinai Y, Sharir M, Floman NN, Halkin H (1985) "Bradycardia induced by interaction between quinidine and ophthalmic timolol." Ann Intern Med, 103, p. 890-1
  2. Lewis RV, Lennard MS, Jackson PR, Tucker GT, Ramsay LE, Woods HF (1985) "Timolol and atenolol: relationships between oxidation phenotype, pharmacokinetics and pharmacodynamics." Br J Clin Pharmacol, 19, p. 329-33
  3. Alvan G, Calissendorff B, Seideman P, Widmark K, Widmark G (1980) "Absorption of ocular timolol." Clin Pharmacokinet, 5, p. 95-100
  4. Edeki TI, He HB, Wood AJJ (1995) "Pharmacogenetic explanation for excessive beta-blockade following timolol eye drops: potential for oral-ophthalmic drug interaction." JAMA, 274, p. 1611-3
  5. Higginbotham E (1996) "Topical beta-adrenergic antagonists and quinidine: a risky interaction." Arch Ophthalmol, 114, p. 745-6
  6. Ishii Y, Nakamura K, Tsutsumi K, Kotegawa T, Nakano S, Nakatsuka K (2000) "Drug interaction between cimetidine and timolol ophthalmic solution: Effect on heart rate and intraocular pressure in healthy Japanese volunteers." J Clin Pharmacol, 40, p. 193-9
  7. Fraunfelder FT, Fraunfelder FW; Randall JA (2001) "Drug-Induced Ocular Side Effects" Boston, MA: Butterworth-Heinemann
Moderate

phenylephrine timolol ophthalmic

Applies to: chlorpheniramine / guaifenesin / phenylephrine and timolol ophthalmic

MONITOR: A case report suggests that beta-blockers may enhance the pressor response to phenylephrine. The proposed mechanism involves blockade of beta-2 adrenergic receptors in the peripheral vasculature, resulting in unopposed alpha-adrenergic effect of phenylephrine that is responsible for vasoconstriction. Additionally, beta-blockers may desensitize baroreceptors that normally modulate heart rate in response to blood pressure elevations by increasing vagal activity on the sinoauricular node. In the case report, a woman with a history of hypertension treated with hydrochlorothiazide (50 mg twice a day) and propranolol (40 mg four times a day) developed sudden bitemporal pain and became unconscious shortly after she was given one drop of a 10% phenylephrine solution in each eye during an ophthalmic examination. She subsequently died of intracerebral hemorrhage due to rupture of a berry aneurysm. The authors noted that the patient had received the same eye drop without incident on two previous occasions when she was not receiving blood pressure or other medications. Nevertheless, an interaction between phenylephrine and beta-blockers is not well established. Phenylephrine acts predominantly on alpha-adrenergic receptors and has little or no direct effect on beta-2 adrenergic receptors, although it may affect them indirectly by enhancing release of norepinephrine from adrenergic nerve terminals. In a study of 12 patients with hypertension, mean phenylephrine doses required to increase systolic blood pressure by 25 mmHg were not significantly different following 2 weeks on propranolol, metoprolol, and placebo (4.8 mcg/kg, 4.7 mcg/kg, and 5.3 mcg/kg, respectively). Baroreceptor-mediated decreases in heart rate during phenylephrine infusion were also in the same range on propranolol, metoprolol, and placebo over baseline heart rate values. In another study, no changes in blood pressure or heart rate were observed in hypertensive patients treated with metoprolol who were given 0.5 to 4 mg doses of phenylephrine intranasally every hour up to a total of 7.5 to 15 mg, or 4 to 30 times the usual recommended dose, compared to placebo or baseline values. These results support the lack of a significant interaction between beta-blockers and phenylephrine.

MANAGEMENT: Until more information is available, caution should be exercised when phenylephrine is used in combination with beta-blockers including ophthalmic formulations, which may be systemically absorbed and can produce clinically significant systemic effects even at low or undetectable plasma levels. Monitoring of blood pressure should be considered, particularly when phenylephrine is administered intravenously or intraocularly. Although an interaction is not likely to occur with cardioselective beta-blockers, caution may be advisable when high dosages are used, since cardioselectivity is not absolute and may be lost with larger doses. A beta-blocker such as propranolol may be used to treat cardiac arrhythmias that occur during administration of phenylephrine.

References (2)
  1. Cass E, Kadar D, Stein HA (1979) "Hazards of phenylephrine topical medication in persons taking propranolol." Can Med Assoc J, 120, p. 1261-2
  2. Myers MG, Iazzetta JJ (1982) "Intranasally administered phenylephrine and blood pressure." Can Med Assoc J, 127, p. 365-6

Drug and food/lifestyle interactions

Moderate

chlorpheniramine food/lifestyle

Applies to: chlorpheniramine / guaifenesin / phenylephrine

GENERALLY AVOID: Alcohol may potentiate some of the pharmacologic effects of CNS-active agents. Use in combination may result in additive central nervous system depression and/or impairment of judgment, thinking, and psychomotor skills.

MANAGEMENT: Patients receiving CNS-active agents should be warned of this interaction and advised to avoid or limit consumption of alcohol. Ambulatory patients should be counseled to avoid hazardous activities requiring complete mental alertness and motor coordination until they know how these agents affect them, and to notify their physician if they experience excessive or prolonged CNS effects that interfere with their normal activities.

References (4)
  1. Warrington SJ, Ankier SI, Turner P (1986) "Evaluation of possible interactions between ethanol and trazodone or amitriptyline." Neuropsychobiology, 15, p. 31-7
  2. Gilman AG, eds., Nies AS, Rall TW, Taylor P (1990) "Goodman and Gilman's the Pharmacological Basis of Therapeutics." New York, NY: Pergamon Press Inc.
  3. (2012) "Product Information. Fycompa (perampanel)." Eisai Inc
  4. (2015) "Product Information. Rexulti (brexpiprazole)." Otsuka American Pharmaceuticals Inc
Moderate

phenylephrine food/lifestyle

Applies to: chlorpheniramine / guaifenesin / phenylephrine

MONITOR: Coadministration of two or more sympathomimetic agents may increase the risk of adverse effects such as nervousness, irritability, and increased heart rate. Central nervous system (CNS) stimulants, particularly amphetamines, can potentiate the adrenergic response to vasopressors and other sympathomimetic agents. Additive increases in blood pressure and heart rate may occur due to enhanced peripheral sympathetic activity.

MANAGEMENT: Caution is advised if two or more sympathomimetic agents are coadministered. Pulse and blood pressure should be closely monitored.

References (7)
  1. Rosenblatt JE, Lake CR, van Kammen DP, Ziegler MG, Bunney WE Jr (1979) "Interactions of amphetamine, pimozide, and lithium on plasma norepineophrine and dopamine-beta-hydroxylase in schizophrenic patients." Psychiatry Res, 1, p. 45-52
  2. Cavanaugh JH, Griffith JD, Oates JA (1970) "Effect of amphetamine on the pressor response to tyramine: formation of p-hydroxynorephedrine from amphetamine in man." Clin Pharmacol Ther, 11, p. 656
  3. (2001) "Product Information. Adderall (amphetamine-dextroamphetamine)." Shire Richwood Pharmaceutical Company Inc
  4. (2001) "Product Information. Tenuate (diethylpropion)." Aventis Pharmaceuticals
  5. (2001) "Product Information. Sanorex (mazindol)." Novartis Pharmaceuticals
  6. (2001) "Product Information. Focalin (dexmethylphenidate)." Mikart Inc
  7. (2002) "Product Information. Strattera (atomoxetine)." Lilly, Eli and Company

Disease interactions

Major

timolol ophthalmic Allergies

Applies to: Allergies

Topically applied beta-adrenergic receptor blocking agents (aka beta-blockers) are systemically absorbed, with the potential for producing clinically significant systemic effects even at low or undetectable plasma levels. The use of beta-blockers in patients with a history of allergic reactions or anaphylaxis may be associated with heightened reactivity to culprit allergens. The frequency and/or severity of attacks may be increased during beta-blocker therapy. In addition, these patients may be refractory to the usual doses of epinephrine used to treat acute hypersensitivity reactions and may require a beta-agonist such as isoproterenol.

Major

timolol ophthalmic Asthma

Applies to: Asthma

Ophthalmic beta-adrenergic receptor blocking agents (aka beta-blockers) in general should not be used in patients with a current or past history of bronchial asthma or chronic obstructive pulmonary disease. Topically applied beta-blockers are systemically absorbed, with the potential for producing clinically significant systemic effects even at low or undetectable plasma levels. In the respiratory tract, beta blockade may adversely affect pulmonary function by counteracting the bronchodilation produced by catecholamine stimulation of beta-2 receptors. Although agents with beta-1 selectivity (e.g., betaxolol) are considered safer in patients with bronchospastic diseases, cardioselectivity is not absolute and may be lost with larger doses or higher plasma levels.

Major

timolol ophthalmic Cardiogenic Shock

Applies to: Cardiogenic Shock

The use of ophthalmic beta-adrenergic receptor blocking agents (aka beta-blockers) is considered by manufacturers to be contraindicated in patients with cardiogenic shock. Topically applied beta-blockers are systemically absorbed, with the potential for producing clinically significant systemic effects even at low or undetectable plasma levels. In cardiac tissues, beta blockade causes a reduction in inotropic as well as chronotropic activity, which may further depress cardiac output and blood pressure in such patients.

Major

phenylephrine Cardiovascular Disease

Applies to: Cardiovascular Disease

Sympathomimetic agents may cause adverse cardiovascular effects, particularly when used in high dosages and/or in susceptible patients. In cardiac tissues, these agents may produce positive chronotropic and inotropic effects via stimulation of beta- 1 adrenergic receptors. Cardiac output, oxygen consumption, and the work of the heart may be increased. In the peripheral vasculature, vasoconstriction may occur via stimulation of alpha-1 adrenergic receptors. Palpitations, tachycardia, arrhythmia, hypertension, reflex bradycardia, coronary occlusion, cerebral vasculitis, myocardial infarction, cardiac arrest, and death have been reported. Some of these agents, particularly ephedra alkaloids (ephedrine, ma huang, phenylpropanolamine), may also predispose patients to hemorrhagic and ischemic stroke. Therapy with sympathomimetic agents should generally be avoided or administered cautiously in patients with sensitivity to sympathomimetic amines, hyperthyroidism, or underlying cardiovascular or cerebrovascular disorders. These agents should not be used in patients with severe coronary artery disease or severe/uncontrolled hypertension.

Major

timolol ophthalmic Cerebrovascular Insufficiency

Applies to: Cerebrovascular Insufficiency

Due to their negative inotropic and chronotropic effects on the heart, beta-adrenergic receptor blocking agents (aka beta-blockers) reduce cardiac output and may precipitate or aggravate symptoms of arterial insufficiency in patients with peripheral vascular disease. In addition, the nonselective beta-blockers (e.g., timolol, carteolol) may attenuate catecholamine-mediated vasodilation during exercise by blocking beta-2 receptors in peripheral vessels. Since topically applied beta-blockers are systemically absorbed and may produce clinically significant systemic effects even at low or undetectable plasma levels, therapy with ophthalmic beta-blockers should be administered cautiously in patients with peripheral vascular disease. Close monitoring for progression of arterial obstruction is advised.

Major

phenylephrine Cerebrovascular Insufficiency

Applies to: Cerebrovascular Insufficiency

Sympathomimetic agents may cause adverse cardiovascular effects, particularly when used in high dosages and/or in susceptible patients. In cardiac tissues, these agents may produce positive chronotropic and inotropic effects via stimulation of beta- 1 adrenergic receptors. Cardiac output, oxygen consumption, and the work of the heart may be increased. In the peripheral vasculature, vasoconstriction may occur via stimulation of alpha-1 adrenergic receptors. Palpitations, tachycardia, arrhythmia, hypertension, reflex bradycardia, coronary occlusion, cerebral vasculitis, myocardial infarction, cardiac arrest, and death have been reported. Some of these agents, particularly ephedra alkaloids (ephedrine, ma huang, phenylpropanolamine), may also predispose patients to hemorrhagic and ischemic stroke. Therapy with sympathomimetic agents should generally be avoided or administered cautiously in patients with sensitivity to sympathomimetic amines, hyperthyroidism, or underlying cardiovascular or cerebrovascular disorders. These agents should not be used in patients with severe coronary artery disease or severe/uncontrolled hypertension.

Major

timolol ophthalmic Chronic Obstructive Pulmonary Disease

Applies to: Chronic Obstructive Pulmonary Disease

Ophthalmic beta-adrenergic receptor blocking agents (aka beta-blockers) in general should not be used in patients with a current or past history of bronchial asthma or chronic obstructive pulmonary disease. Topically applied beta-blockers are systemically absorbed, with the potential for producing clinically significant systemic effects even at low or undetectable plasma levels. In the respiratory tract, beta blockade may adversely affect pulmonary function by counteracting the bronchodilation produced by catecholamine stimulation of beta-2 receptors. Although agents with beta-1 selectivity (e.g., betaxolol) are considered safer in patients with bronchospastic diseases, cardioselectivity is not absolute and may be lost with larger doses or higher plasma levels.

Major

timolol ophthalmic Congestive Heart Failure

Applies to: Congestive Heart Failure

The use of ophthalmic beta-adrenergic receptor blocking agents (aka beta-blockers) is considered by manufacturers to be contraindicated in patients with overt congestive heart failure (CHF). Topically applied beta-blockers are systemically absorbed, with the potential for producing clinically significant systemic effects even at low or undetectable plasma levels. Since sympathetic stimulation may be important in maintaining the hemodynamic function in patients with CHF, beta blockade can worsen the heart failure. However, therapy with ophthalmic beta-blockers can be administered cautiously in some CHF patients provided they are well compensated and receiving digitalis, diuretics, an ACE inhibitor, and/or nitrates. Beta-blockers should be discontinued if cardiac failure develops or worsens during therapy.

Major

timolol ophthalmic Diabetes Mellitus

Applies to: Diabetes Mellitus

Beta-adrenergic receptor blocking agents (aka beta-blockers) may mask symptoms of hypoglycemia such as tremors, tachycardia and blood pressure changes. In addition, the nonselective beta-blockers (e.g., timolol, carteolol) may inhibit catecholamine-mediated glycogenolysis, thereby potentiating insulin-induced hypoglycemia and delaying the recovery of normal blood glucose levels. Since topically applied beta-blockers are systemically absorbed and may produce clinically significant systemic effects even at low or undetectable plasma levels, therapy with ophthalmic beta-blockers should be administered cautiously in patients with diabetes or predisposed to spontaneous hypoglycemia.

Major

timolol ophthalmic Heart Block

Applies to: Heart Block

The use of ophthalmic beta-adrenergic receptor blocking agents (aka beta-blockers) is considered by manufacturers to be contraindicated in patients with sinus bradyarrhythmia or heart block greater than the first degree (unless a functioning pacemaker is present). Topically applied beta-blockers are systemically absorbed, with the potential for producing clinically significant systemic effects even at low or undetectable plasma levels. In cardiac tissues, beta blockade causes a reduction in inotropic as well as chronotropic activity, which may further depress cardiac function in such patients.

Major

phenylephrine Hyperthyroidism

Applies to: Hyperthyroidism

Sympathomimetic agents may cause adverse cardiovascular effects, particularly when used in high dosages and/or in susceptible patients. In cardiac tissues, these agents may produce positive chronotropic and inotropic effects via stimulation of beta- 1 adrenergic receptors. Cardiac output, oxygen consumption, and the work of the heart may be increased. In the peripheral vasculature, vasoconstriction may occur via stimulation of alpha-1 adrenergic receptors. Palpitations, tachycardia, arrhythmia, hypertension, reflex bradycardia, coronary occlusion, cerebral vasculitis, myocardial infarction, cardiac arrest, and death have been reported. Some of these agents, particularly ephedra alkaloids (ephedrine, ma huang, phenylpropanolamine), may also predispose patients to hemorrhagic and ischemic stroke. Therapy with sympathomimetic agents should generally be avoided or administered cautiously in patients with sensitivity to sympathomimetic amines, hyperthyroidism, or underlying cardiovascular or cerebrovascular disorders. These agents should not be used in patients with severe coronary artery disease or severe/uncontrolled hypertension.

Major

timolol ophthalmic Hyperthyroidism

Applies to: Hyperthyroidism

Beta-adrenergic receptor blocking agents (aka beta-blockers) may mask some symptoms of hyperthyroidism such as tachycardia, anxiety, tremor, and heat intolerance. Abrupt withdrawal of beta-blocker therapy in thyrotoxic patients may exacerbate symptoms of hyperthyroidism or precipitate a thyroid storm. Since topically applied beta-blockers are systemically absorbed and may produce clinically significant systemic effects even at low or undetectable plasma levels, therapy with ophthalmic beta-blockers should be administered cautiously in patients with or suspected of having hyperthyroidism. Cessation of beta-blocker therapy, when necessary, should occur gradually over a period of 1 to 2 weeks. Patients should be advised not to discontinue treatment without first consulting with the physician. Close monitoring is recommended during and after therapy withdrawal.

Major

timolol ophthalmic Peripheral Arterial Disease

Applies to: Peripheral Arterial Disease

Due to their negative inotropic and chronotropic effects on the heart, beta-adrenergic receptor blocking agents (aka beta-blockers) reduce cardiac output and may precipitate or aggravate symptoms of arterial insufficiency in patients with peripheral vascular disease. In addition, the nonselective beta-blockers (e.g., timolol, carteolol) may attenuate catecholamine-mediated vasodilation during exercise by blocking beta-2 receptors in peripheral vessels. Since topically applied beta-blockers are systemically absorbed and may produce clinically significant systemic effects even at low or undetectable plasma levels, therapy with ophthalmic beta-blockers should be administered cautiously in patients with peripheral vascular disease. Close monitoring for progression of arterial obstruction is advised.

Major

phenylephrine Pheochromocytoma

Applies to: Pheochromocytoma

Sympathomimetic agents may cause adverse cardiovascular effects, particularly when used in high dosages and/or in susceptible patients. In cardiac tissues, these agents may produce positive chronotropic and inotropic effects via stimulation of beta- 1 adrenergic receptors. Cardiac output, oxygen consumption, and the work of the heart may be increased. In the peripheral vasculature, vasoconstriction may occur via stimulation of alpha-1 adrenergic receptors. Palpitations, tachycardia, arrhythmia, hypertension, reflex bradycardia, coronary occlusion, cerebral vasculitis, myocardial infarction, cardiac arrest, and death have been reported. Some of these agents, particularly ephedra alkaloids (ephedrine, ma huang, phenylpropanolamine), may also predispose patients to hemorrhagic and ischemic stroke. Therapy with sympathomimetic agents should generally be avoided or administered cautiously in patients with sensitivity to sympathomimetic amines, hyperthyroidism, or underlying cardiovascular or cerebrovascular disorders. These agents should not be used in patients with severe coronary artery disease or severe/uncontrolled hypertension.

Major

timolol ophthalmic Sinus Node Dysfunction

Applies to: Sinus Node Dysfunction

The use of ophthalmic beta-adrenergic receptor blocking agents (aka beta-blockers) is considered by manufacturers to be contraindicated in patients with sinus bradyarrhythmia or heart block greater than the first degree (unless a functioning pacemaker is present). Topically applied beta-blockers are systemically absorbed, with the potential for producing clinically significant systemic effects even at low or undetectable plasma levels. In cardiac tissues, beta blockade causes a reduction in inotropic as well as chronotropic activity, which may further depress cardiac function in such patients.

Moderate

chlorpheniramine Asthma

Applies to: Asthma

It has been suggested that the anticholinergic effect of antihistamines may reduce the volume and cause thickening of bronchial secretions, resulting in obstruction of respiratory tract. Some manufacturers and clinicians recommend that therapy with antihistamines be administered cautiously in patients with asthma or chronic obstructive pulmonary disease.

Moderate

phenylephrine Benign Prostatic Hyperplasia

Applies to: Benign Prostatic Hyperplasia

Sympathomimetic agents may cause or worsen urinary difficulty in patients with prostate enlargement due to smooth muscle contraction in the bladder neck via stimulation of alpha-1 adrenergic receptors. Therapy with sympathomimetic agents should be administered cautiously in patients with hypertrophy or neoplasm of the prostate.

Moderate

chlorpheniramine Cardiovascular Disease

Applies to: Cardiovascular Disease

Antihistamines may infrequently cause cardiovascular adverse effects related to their anticholinergic and local anesthetic (quinidine-like) activities. Tachycardia, palpitation, ECG changes, arrhythmias, hypotension, and hypertension have been reported. Although these effects are uncommon and usually limited to overdosage situations, the manufacturers and some clinicians recommend that therapy with antihistamines be administered cautiously in patients with cardiovascular disease, hypertension, and/or hyperthyroidism.

Moderate

chlorpheniramine Chronic Obstructive Pulmonary Disease

Applies to: Chronic Obstructive Pulmonary Disease

It has been suggested that the anticholinergic effect of antihistamines may reduce the volume and cause thickening of bronchial secretions, resulting in obstruction of respiratory tract. Some manufacturers and clinicians recommend that therapy with antihistamines be administered cautiously in patients with asthma or chronic obstructive pulmonary disease.

Moderate

phenylephrine Diabetes Mellitus

Applies to: Diabetes Mellitus

Sympathomimetic agents may cause increases in blood glucose concentrations. These effects are usually transient and slight but may be significant with dosages higher than those normally recommended. Therapy with sympathomimetic agents should be administered cautiously in patients with diabetes mellitus. Closer monitoring of blood glucose concentrations may be appropriate.

Moderate

chlorpheniramine Gastrointestinal Obstruction

Applies to: Gastrointestinal Obstruction

Antihistamines often have anticholinergic activity, to which elderly patients are particularly sensitive. Therapy with antihistamines should be administered cautiously, if at all, in patients with preexisting conditions that are likely to be exacerbated by anticholinergic activity, such as urinary retention or obstruction; angle-closure glaucoma, untreated intraocular hypertension, or uncontrolled primary open-angle glaucoma; and gastrointestinal obstructive disorders. Conventional, first-generation antihistamines such as the ethanolamines (bromodiphenhydramine, carbinoxamine, clemastine, dimenhydrinate, diphenhydramine, doxylamine, phenyltoloxamine) tend to exhibit substantial anticholinergic effects. In contrast, the newer, relatively nonsedating antihistamines (e.g., cetirizine, fexofenadine, loratadine) reportedly have low to minimal anticholinergic activity at normally recommended dosages and may be appropriate alternatives.

Moderate

phenylephrine Glaucoma/Intraocular Hypertension

Applies to: Glaucoma / Intraocular Hypertension

Sympathomimetic agents can induce transient mydriasis via stimulation of alpha-1 adrenergic receptors. In patients with anatomically narrow angles or narrow-angle glaucoma, pupillary dilation can provoke an acute attack. In patients with other forms of glaucoma, mydriasis may occasionally increase intraocular pressure. Therapy with sympathomimetic agents should be administered cautiously in patients with or predisposed to glaucoma, particularly narrow-angle glaucoma.

Moderate

chlorpheniramine Glaucoma/Intraocular Hypertension

Applies to: Glaucoma / Intraocular Hypertension

Antihistamines often have anticholinergic activity, to which elderly patients are particularly sensitive. Therapy with antihistamines should be administered cautiously, if at all, in patients with preexisting conditions that are likely to be exacerbated by anticholinergic activity, such as urinary retention or obstruction; angle-closure glaucoma, untreated intraocular hypertension, or uncontrolled primary open-angle glaucoma; and gastrointestinal obstructive disorders. Conventional, first-generation antihistamines such as the ethanolamines (bromodiphenhydramine, carbinoxamine, clemastine, dimenhydrinate, diphenhydramine, doxylamine, phenyltoloxamine) tend to exhibit substantial anticholinergic effects. In contrast, the newer, relatively nonsedating antihistamines (e.g., cetirizine, fexofenadine, loratadine) reportedly have low to minimal anticholinergic activity at normally recommended dosages and may be appropriate alternatives.

Moderate

chlorpheniramine Hyperthyroidism

Applies to: Hyperthyroidism

Antihistamines may infrequently cause cardiovascular adverse effects related to their anticholinergic and local anesthetic (quinidine-like) activities. Tachycardia, palpitation, ECG changes, arrhythmias, hypotension, and hypertension have been reported. Although these effects are uncommon and usually limited to overdosage situations, the manufacturers and some clinicians recommend that therapy with antihistamines be administered cautiously in patients with cardiovascular disease, hypertension, and/or hyperthyroidism.

Moderate

chlorpheniramine Hypotension

Applies to: Hypotension

Antihistamines may infrequently cause cardiovascular adverse effects related to their anticholinergic and local anesthetic (quinidine-like) activities. Tachycardia, palpitation, ECG changes, arrhythmias, hypotension, and hypertension have been reported. Although these effects are uncommon and usually limited to overdosage situations, the manufacturers and some clinicians recommend that therapy with antihistamines be administered cautiously in patients with cardiovascular disease, hypertension, and/or hyperthyroidism.

Moderate

chlorpheniramine Liver Disease

Applies to: Liver Disease

Limited pharmacokinetic data are available for the older, first-generation antihistamines. Many appear to be primarily metabolized by the liver, and both parent drugs and metabolites are excreted in the urine. Patients with renal and/or liver disease may be at greater risk for adverse effects from antihistamines due to drug and metabolite accumulation. Therapy with antihistamines should be administered cautiously in such patients. Lower initial dosages may be appropriate.

Moderate

timolol ophthalmic Myoneural Disorder

Applies to: Myoneural Disorder

Topically applied beta-adrenergic receptor blocking agents (aka beta-blockers) are systemically absorbed, with the potential for producing clinically significant systemic effects even at low or undetectable plasma levels. In the nervous and musculoskeletal systems, beta blockade may potentiate muscle weakness consistent with certain myasthenic symptoms such as diplopia, ptosis, and generalized weakness. Several beta-blockers have been associated rarely with aggravation of muscle weakness in patients with preexisting myasthenia gravis or myasthenic symptoms.

Moderate

phenylephrine Prostate Tumor

Applies to: Prostate Tumor

Sympathomimetic agents may cause or worsen urinary difficulty in patients with prostate enlargement due to smooth muscle contraction in the bladder neck via stimulation of alpha-1 adrenergic receptors. Therapy with sympathomimetic agents should be administered cautiously in patients with hypertrophy or neoplasm of the prostate.

Moderate

chlorpheniramine Renal Dysfunction

Applies to: Renal Dysfunction

Limited pharmacokinetic data are available for the older, first-generation antihistamines. Many appear to be primarily metabolized by the liver, and both parent drugs and metabolites are excreted in the urine. Patients with renal and/or liver disease may be at greater risk for adverse effects from antihistamines due to drug and metabolite accumulation. Therapy with antihistamines should be administered cautiously in such patients. Lower initial dosages may be appropriate.

Moderate

chlorpheniramine Urinary Retention

Applies to: Urinary Retention

Antihistamines often have anticholinergic activity, to which elderly patients are particularly sensitive. Therapy with antihistamines should be administered cautiously, if at all, in patients with preexisting conditions that are likely to be exacerbated by anticholinergic activity, such as urinary retention or obstruction; angle-closure glaucoma, untreated intraocular hypertension, or uncontrolled primary open-angle glaucoma; and gastrointestinal obstructive disorders. Conventional, first-generation antihistamines such as the ethanolamines (bromodiphenhydramine, carbinoxamine, clemastine, dimenhydrinate, diphenhydramine, doxylamine, phenyltoloxamine) tend to exhibit substantial anticholinergic effects. In contrast, the newer, relatively nonsedating antihistamines (e.g., cetirizine, fexofenadine, loratadine) reportedly have low to minimal anticholinergic activity at normally recommended dosages and may be appropriate alternatives.

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.