Skip to main content

Drug Interactions between chlorpheniramine / guaifenesin / phenylephrine and clorazepate

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Moderate

chlorpheniramine clorazepate

Applies to: chlorpheniramine / guaifenesin / phenylephrine and clorazepate

MONITOR: Central nervous system- and/or respiratory-depressant effects may be additively or synergistically increased in patients taking multiple drugs that cause these effects, especially in elderly or debilitated patients. Sedation and impairment of attention, judgment, thinking, and psychomotor skills may increase.

MANAGEMENT: During concomitant use of these drugs, patients should be monitored for potentially excessive or prolonged CNS and respiratory depression. Cautious dosage titration may be required, particularly at treatment initiation. Ambulatory patients should be counseled to avoid hazardous activities requiring mental alertness and motor coordination until they know how these agents affect them, and to notify their physician if they experience excessive or prolonged CNS effects that interfere with their normal activities.

References (36)
  1. Hamilton MJ, Bush M, Smith P, Peck AW (1982) "The effects of bupropion, a new antidepressant drug, and diazepam, and their interaction in man." Br J Clin Pharmacol, 14, p. 791-7
  2. Stambaugh JE, Lane C (1983) "Analgesic efficacy and pharmacokinetic evaluation of meperidine and hydroxyzine, alone and in combination." Cancer Invest, 1, p. 111-7
  3. Sotaniemi EA, Anttila M, Rautio A, et al. (1981) "Propranolol and sotalol metabolism after a drinking party." Clin Pharmacol Ther, 29, p. 705-10
  4. Grabowski BS, Cady WJ, Young WW, Emery JF (1980) "Effects of acute alcohol administration on propranolol absorption." Int J Clin Pharmacol Ther Toxicol, 18, p. 317-9
  5. Lemberger L, Rowe H, Bosomworth JC, Tenbarge JB, Bergstrom RF (1988) "The effect of fluoxetine on the pharmacokinetics and psychomotor responses of diazepam." Clin Pharmacol Ther, 43, p. 412-9
  6. MacLeod SM, Giles HG, Patzalek G, Thiessen JJ, Sellers EM (1977) "Diazepam actions and plasma concentrations following ethanol ingestion." Eur J Clin Pharmacol, 11, p. 345-9
  7. Divoll M, Greenblatt DJ, Lacasse Y, Shader RI (1981) "Benzodiazepine overdosage: plasma concentrations and clinical outcome." Psychopharmacology (Berl), 73, p. 381-3
  8. Naylor GJ, McHarg A (1977) "Profound hypothermia on combined lithium carbonate and diazepam treatment." Br Med J, 2, p. 22
  9. Stovner J, Endresen R (1965) "Intravenous anaesthesia with diazepam." Acta Anaesthesiol Scand, 24, p. 223-7
  10. Driessen JJ, Vree TB, Booij LH, van der Pol FM, Crul JF (1984) "Effect of some benzodiazepines on peripheral neuromuscular function in the rat in-vitro hemidiaphragm preparation." J Pharm Pharmacol, 36, p. 244-7
  11. Feldman SA, Crawley BE (1970) "Interaction of diazepam with the muscle-relaxant drugs." Br Med J, 1, p. 336-8
  12. Ochs HR, Greenblatt DJ, Verburg-Ochs B (1984) "Propranolol interactions with diazepam, lorazepam and alprazolam." Clin Pharmacol Ther, 36, p. 451-5
  13. Desager JP, Hulhoven R, Harvengt C, Hermann P, Guillet P, Thiercelin JF (1988) "Possible interactions between zolpidem, a new sleep inducer and chlorpromazine, a phenothiazine neuroleptic." Psychopharmacology (Berl), 96, p. 63-6
  14. Tverskoy M, Fleyshman G, Ezry J, Bradley EL, Jr Kissin I (1989) "Midazolam-morphine sedative interaction in patients." Anesth Analg, 68, p. 282-5
  15. "Product Information. Iopidine (apraclonidine ophthalmic)." Alcon Laboratories Inc
  16. Greiff JMC, Rowbotham D (1994) "Pharmacokinetic drug interactions with gastrointestinal motility modifying agents." Clin Pharmacokinet, 27, p. 447-61
  17. Greb WH, Buscher G, Dierdorf HD, Koster FE, Wolf D, Mellows G (1989) "The effect of liver enzyme inhibition by cimetidine and enzyme induction by phenobarbitone on the pharmacokinetics of paroxetine." Acta Psychiatr Scand, 80 Suppl, p. 95-8
  18. Markowitz JS, Wells BG, Carson WH (1995) "Interactions between antipsychotic and antihypertensive drugs." Ann Pharmacother, 29, p. 603-9
  19. (2001) "Product Information. Ultram (tramadol)." McNeil Pharmaceutical
  20. (2001) "Product Information. Artane (trihexyphenidyl)." Lederle Laboratories
  21. (2001) "Product Information. Ultiva (remifentanil)." Mylan Institutional (formally Bioniche Pharma USA Inc)
  22. (2001) "Product Information. Seroquel (quetiapine)." Astra-Zeneca Pharmaceuticals
  23. (2001) "Product Information. Meridia (sibutramine)." Knoll Pharmaceutical Company
  24. (2001) "Product Information. Tasmar (tolcapone)." Valeant Pharmaceuticals
  25. Miller LG (1998) "Herbal medicinals: selected clinical considerations focusing on known or potential drug-herb interactions." Arch Intern Med, 158, p. 2200-11
  26. (2001) "Product Information. Precedex (dexmedetomidine)." Abbott Pharmaceutical
  27. (2001) "Product Information. Trileptal (oxcarbazepine)." Novartis Pharmaceuticals
  28. Ferslew KE, Hagardorn AN, McCormick WF (1990) "A fatal interaction of methocarbamol and ethanol in an accidental poisoning." J Forensic Sci, 35, p. 477-82
  29. Plushner SL (2000) "Valerian: valeriana officinalis." Am J Health Syst Pharm, 57, p. 328-35
  30. (2002) "Product Information. Xatral (alfuzosin)." Sanofi-Synthelabo Canada Inc
  31. (2002) "Product Information. Lexapro (escitalopram)." Forest Pharmaceuticals
  32. Cerner Multum, Inc. "UK Summary of Product Characteristics."
  33. Cerner Multum, Inc. "Australian Product Information."
  34. (2012) "Product Information. Fycompa (perampanel)." Eisai Inc
  35. (2014) "Product Information. Belsomra (suvorexant)." Merck & Co., Inc
  36. (2015) "Product Information. Rexulti (brexpiprazole)." Otsuka American Pharmaceuticals Inc

Drug and food/lifestyle interactions

Moderate

chlorpheniramine food/lifestyle

Applies to: chlorpheniramine / guaifenesin / phenylephrine

GENERALLY AVOID: Alcohol may potentiate some of the pharmacologic effects of CNS-active agents. Use in combination may result in additive central nervous system depression and/or impairment of judgment, thinking, and psychomotor skills.

MANAGEMENT: Patients receiving CNS-active agents should be warned of this interaction and advised to avoid or limit consumption of alcohol. Ambulatory patients should be counseled to avoid hazardous activities requiring complete mental alertness and motor coordination until they know how these agents affect them, and to notify their physician if they experience excessive or prolonged CNS effects that interfere with their normal activities.

References (4)
  1. Warrington SJ, Ankier SI, Turner P (1986) "Evaluation of possible interactions between ethanol and trazodone or amitriptyline." Neuropsychobiology, 15, p. 31-7
  2. Gilman AG, eds., Nies AS, Rall TW, Taylor P (1990) "Goodman and Gilman's the Pharmacological Basis of Therapeutics." New York, NY: Pergamon Press Inc.
  3. (2012) "Product Information. Fycompa (perampanel)." Eisai Inc
  4. (2015) "Product Information. Rexulti (brexpiprazole)." Otsuka American Pharmaceuticals Inc
Moderate

clorazepate food/lifestyle

Applies to: clorazepate

GENERALLY AVOID: Alcohol may potentiate some of the pharmacologic effects of CNS-active agents. Use in combination may result in additive central nervous system depression and/or impairment of judgment, thinking, and psychomotor skills.

MANAGEMENT: Patients receiving CNS-active agents should be warned of this interaction and advised to avoid or limit consumption of alcohol. Ambulatory patients should be counseled to avoid hazardous activities requiring complete mental alertness and motor coordination until they know how these agents affect them, and to notify their physician if they experience excessive or prolonged CNS effects that interfere with their normal activities.

References (4)
  1. Warrington SJ, Ankier SI, Turner P (1986) "Evaluation of possible interactions between ethanol and trazodone or amitriptyline." Neuropsychobiology, 15, p. 31-7
  2. Gilman AG, eds., Nies AS, Rall TW, Taylor P (1990) "Goodman and Gilman's the Pharmacological Basis of Therapeutics." New York, NY: Pergamon Press Inc.
  3. (2012) "Product Information. Fycompa (perampanel)." Eisai Inc
  4. (2015) "Product Information. Rexulti (brexpiprazole)." Otsuka American Pharmaceuticals Inc
Moderate

phenylephrine food/lifestyle

Applies to: chlorpheniramine / guaifenesin / phenylephrine

MONITOR: Coadministration of two or more sympathomimetic agents may increase the risk of adverse effects such as nervousness, irritability, and increased heart rate. Central nervous system (CNS) stimulants, particularly amphetamines, can potentiate the adrenergic response to vasopressors and other sympathomimetic agents. Additive increases in blood pressure and heart rate may occur due to enhanced peripheral sympathetic activity.

MANAGEMENT: Caution is advised if two or more sympathomimetic agents are coadministered. Pulse and blood pressure should be closely monitored.

References (7)
  1. Rosenblatt JE, Lake CR, van Kammen DP, Ziegler MG, Bunney WE Jr (1979) "Interactions of amphetamine, pimozide, and lithium on plasma norepineophrine and dopamine-beta-hydroxylase in schizophrenic patients." Psychiatry Res, 1, p. 45-52
  2. Cavanaugh JH, Griffith JD, Oates JA (1970) "Effect of amphetamine on the pressor response to tyramine: formation of p-hydroxynorephedrine from amphetamine in man." Clin Pharmacol Ther, 11, p. 656
  3. (2001) "Product Information. Adderall (amphetamine-dextroamphetamine)." Shire Richwood Pharmaceutical Company Inc
  4. (2001) "Product Information. Tenuate (diethylpropion)." Aventis Pharmaceuticals
  5. (2001) "Product Information. Sanorex (mazindol)." Novartis Pharmaceuticals
  6. (2001) "Product Information. Focalin (dexmethylphenidate)." Mikart Inc
  7. (2002) "Product Information. Strattera (atomoxetine)." Lilly, Eli and Company

Disease interactions

Major

clorazepate Acute Alcohol Intoxication

Applies to: Acute Alcohol Intoxication

The use of benzodiazepines with alcohol is not recommended. Patients with acute alcohol intoxication exhibit depressed vital signs. The central nervous system depressant effects of benzodiazepines may be additive with those of alcohol, and severe respiratory depression and death may occur. Therapy with benzodiazepines should be administered cautiously in patients who might be prone to acute alcohol intake.

Major

clorazepate Asphyxia

Applies to: Asphyxia

Benzodiazepines may cause respiratory depression and apnea, usually when given in high dosages and/or by intravenous administration. However, some patients may be susceptible at commonly used dosages, including the elderly, debilitated or severely ill patients, those receiving other CNS depressants, and those with limited ventilatory reserve, chronic pulmonary insufficiency or other respiratory disorders. Therapy with benzodiazepines should be administered cautiously in these patients. Appropriate monitoring and individualization of dosage are particularly important, and equipment for resuscitation should be immediately available if the parenteral route is used. Benzodiazepines, especially injectable formulations, should generally be avoided in patients with sleep apnea, severe respiratory insufficiency, or hypoxia.

Major

phenylephrine Cardiovascular Disease

Applies to: Cardiovascular Disease

Sympathomimetic agents may cause adverse cardiovascular effects, particularly when used in high dosages and/or in susceptible patients. In cardiac tissues, these agents may produce positive chronotropic and inotropic effects via stimulation of beta- 1 adrenergic receptors. Cardiac output, oxygen consumption, and the work of the heart may be increased. In the peripheral vasculature, vasoconstriction may occur via stimulation of alpha-1 adrenergic receptors. Palpitations, tachycardia, arrhythmia, hypertension, reflex bradycardia, coronary occlusion, cerebral vasculitis, myocardial infarction, cardiac arrest, and death have been reported. Some of these agents, particularly ephedra alkaloids (ephedrine, ma huang, phenylpropanolamine), may also predispose patients to hemorrhagic and ischemic stroke. Therapy with sympathomimetic agents should generally be avoided or administered cautiously in patients with sensitivity to sympathomimetic amines, hyperthyroidism, or underlying cardiovascular or cerebrovascular disorders. These agents should not be used in patients with severe coronary artery disease or severe/uncontrolled hypertension.

Major

phenylephrine Cerebrovascular Insufficiency

Applies to: Cerebrovascular Insufficiency

Sympathomimetic agents may cause adverse cardiovascular effects, particularly when used in high dosages and/or in susceptible patients. In cardiac tissues, these agents may produce positive chronotropic and inotropic effects via stimulation of beta- 1 adrenergic receptors. Cardiac output, oxygen consumption, and the work of the heart may be increased. In the peripheral vasculature, vasoconstriction may occur via stimulation of alpha-1 adrenergic receptors. Palpitations, tachycardia, arrhythmia, hypertension, reflex bradycardia, coronary occlusion, cerebral vasculitis, myocardial infarction, cardiac arrest, and death have been reported. Some of these agents, particularly ephedra alkaloids (ephedrine, ma huang, phenylpropanolamine), may also predispose patients to hemorrhagic and ischemic stroke. Therapy with sympathomimetic agents should generally be avoided or administered cautiously in patients with sensitivity to sympathomimetic amines, hyperthyroidism, or underlying cardiovascular or cerebrovascular disorders. These agents should not be used in patients with severe coronary artery disease or severe/uncontrolled hypertension.

Major

clorazepate Drug Abuse/Dependence

Applies to: Drug Abuse / Dependence

Benzodiazepines have the potential to cause dependence and abuse. Tolerance as well as physical and psychological dependence can develop, particularly after prolonged use and/or excessive dosages. However, abrupt cessation following continual use of as few as 6 weeks at therapeutic levels has occasionally precipitated withdrawal symptoms. Addiction- prone individuals, such as those with a history of alcohol or substance abuse, should be under careful surveillance when treated with benzodiazepines. It may be prudent to refrain from dispensing large quantities of medication to these patients. After prolonged use or if dependency is suspected, withdrawal of benzodiazepine therapy should be undertaken gradually using a dosage- tapering schedule. If withdrawal symptoms occur, temporary reinstitution of benzodiazepines may be necessary.

Major

clorazepate Glaucoma/Intraocular Hypertension

Applies to: Glaucoma / Intraocular Hypertension

The manufacturers consider the use of benzodiazepines to be contraindicated in patients with acute angle-closure glaucoma or untreated open-angle glaucoma. These agents do not possess anticholinergic activity but have very rarely been associated with increased intraocular pressure.

Major

phenylephrine Hyperthyroidism

Applies to: Hyperthyroidism

Sympathomimetic agents may cause adverse cardiovascular effects, particularly when used in high dosages and/or in susceptible patients. In cardiac tissues, these agents may produce positive chronotropic and inotropic effects via stimulation of beta- 1 adrenergic receptors. Cardiac output, oxygen consumption, and the work of the heart may be increased. In the peripheral vasculature, vasoconstriction may occur via stimulation of alpha-1 adrenergic receptors. Palpitations, tachycardia, arrhythmia, hypertension, reflex bradycardia, coronary occlusion, cerebral vasculitis, myocardial infarction, cardiac arrest, and death have been reported. Some of these agents, particularly ephedra alkaloids (ephedrine, ma huang, phenylpropanolamine), may also predispose patients to hemorrhagic and ischemic stroke. Therapy with sympathomimetic agents should generally be avoided or administered cautiously in patients with sensitivity to sympathomimetic amines, hyperthyroidism, or underlying cardiovascular or cerebrovascular disorders. These agents should not be used in patients with severe coronary artery disease or severe/uncontrolled hypertension.

Major

clorazepate Liver Disease

Applies to: Liver Disease

Benzodiazepines are metabolized by the liver, and the metabolites are excreted in the urine. Chlordiazepoxide, clorazepate, diazepam, flurazepam and quazepam undergo oxidative N-dealkylation to active metabolites that are substantially longer-acting than the parent compound. These metabolites then undergo further biotransformation to pharmacologically inactive products before excretion by the kidney. Therapy with benzodiazepines should be administered cautiously at lower initial dosages in patients with impaired renal and/or hepatic function. Agents that are converted to weakly active, short-acting, or inactive metabolites may be preferable in hepatic impairment. Lorazepam, oxazepam and temazepam are conjugated to inactive metabolites, while alprazolam, estazolam and triazolam undergo hydroxylation to weakly active or inactive metabolites.

Major

clorazepate Neurosis

Applies to: Neurosis

The use of some benzodiazepines is not recommended for depressive neuroses and psychotic reactions.

Major

phenylephrine Pheochromocytoma

Applies to: Pheochromocytoma

Sympathomimetic agents may cause adverse cardiovascular effects, particularly when used in high dosages and/or in susceptible patients. In cardiac tissues, these agents may produce positive chronotropic and inotropic effects via stimulation of beta- 1 adrenergic receptors. Cardiac output, oxygen consumption, and the work of the heart may be increased. In the peripheral vasculature, vasoconstriction may occur via stimulation of alpha-1 adrenergic receptors. Palpitations, tachycardia, arrhythmia, hypertension, reflex bradycardia, coronary occlusion, cerebral vasculitis, myocardial infarction, cardiac arrest, and death have been reported. Some of these agents, particularly ephedra alkaloids (ephedrine, ma huang, phenylpropanolamine), may also predispose patients to hemorrhagic and ischemic stroke. Therapy with sympathomimetic agents should generally be avoided or administered cautiously in patients with sensitivity to sympathomimetic amines, hyperthyroidism, or underlying cardiovascular or cerebrovascular disorders. These agents should not be used in patients with severe coronary artery disease or severe/uncontrolled hypertension.

Major

clorazepate Psychosis

Applies to: Psychosis

The use of some benzodiazepines is not recommended for depressive neuroses and psychotic reactions.

Major

clorazepate Pulmonary Impairment

Applies to: Pulmonary Impairment

Benzodiazepines may cause respiratory depression and apnea, usually when given in high dosages and/or by intravenous administration. However, some patients may be susceptible at commonly used dosages, including the elderly, debilitated or severely ill patients, those receiving other CNS depressants, and those with limited ventilatory reserve, chronic pulmonary insufficiency or other respiratory disorders. Therapy with benzodiazepines should be administered cautiously in these patients. Appropriate monitoring and individualization of dosage are particularly important, and equipment for resuscitation should be immediately available if the parenteral route is used. Benzodiazepines, especially injectable formulations, should generally be avoided in patients with sleep apnea, severe respiratory insufficiency, or hypoxia.

Major

clorazepate Renal Dysfunction

Applies to: Renal Dysfunction

Benzodiazepines are metabolized by the liver, and the metabolites are excreted in the urine. Chlordiazepoxide, clorazepate, diazepam, flurazepam and quazepam undergo oxidative N-dealkylation to active metabolites that are substantially longer-acting than the parent compound. These metabolites then undergo further biotransformation to pharmacologically inactive products before excretion by the kidney. Therapy with benzodiazepines should be administered cautiously at lower initial dosages in patients with impaired renal and/or hepatic function. Agents that are converted to weakly active, short-acting, or inactive metabolites may be preferable in hepatic impairment. Lorazepam, oxazepam and temazepam are conjugated to inactive metabolites, while alprazolam, estazolam and triazolam undergo hydroxylation to weakly active or inactive metabolites.

Major

clorazepate Respiratory Arrest

Applies to: Respiratory Arrest

Benzodiazepines may cause respiratory depression and apnea, usually when given in high dosages and/or by intravenous administration. However, some patients may be susceptible at commonly used dosages, including the elderly, debilitated or severely ill patients, those receiving other CNS depressants, and those with limited ventilatory reserve, chronic pulmonary insufficiency or other respiratory disorders. Therapy with benzodiazepines should be administered cautiously in these patients. Appropriate monitoring and individualization of dosage are particularly important, and equipment for resuscitation should be immediately available if the parenteral route is used. Benzodiazepines, especially injectable formulations, should generally be avoided in patients with sleep apnea, severe respiratory insufficiency, or hypoxia.

Major

clorazepate Seizures

Applies to: Seizures

The use of benzodiazepines in patients with seizure disorders may increase the incidence or precipitate the onset of generalized tonic-clonic seizures (grand mal). Appropriate anticonvulsant medication might need to be initiated or the dosage increased. Abrupt cessation of benzodiazepine therapy may precipitate seizures and other withdrawal symptoms, particularly after prolonged use and/or excessive dosages. Status epilepticus may occur in patients with a history of seizures withdrawn rapidly from benzodiazepine therapy. Following chronic administration, cessation of benzodiazepine therapy should occur gradually with incrementally reduced dosages. Patients should be advised not to discontinue medication without first consulting with the physician.

Moderate

chlorpheniramine Asthma

Applies to: Asthma

It has been suggested that the anticholinergic effect of antihistamines may reduce the volume and cause thickening of bronchial secretions, resulting in obstruction of respiratory tract. Some manufacturers and clinicians recommend that therapy with antihistamines be administered cautiously in patients with asthma or chronic obstructive pulmonary disease.

Moderate

phenylephrine Benign Prostatic Hyperplasia

Applies to: Benign Prostatic Hyperplasia

Sympathomimetic agents may cause or worsen urinary difficulty in patients with prostate enlargement due to smooth muscle contraction in the bladder neck via stimulation of alpha-1 adrenergic receptors. Therapy with sympathomimetic agents should be administered cautiously in patients with hypertrophy or neoplasm of the prostate.

Moderate

chlorpheniramine Cardiovascular Disease

Applies to: Cardiovascular Disease

Antihistamines may infrequently cause cardiovascular adverse effects related to their anticholinergic and local anesthetic (quinidine-like) activities. Tachycardia, palpitation, ECG changes, arrhythmias, hypotension, and hypertension have been reported. Although these effects are uncommon and usually limited to overdosage situations, the manufacturers and some clinicians recommend that therapy with antihistamines be administered cautiously in patients with cardiovascular disease, hypertension, and/or hyperthyroidism.

Moderate

chlorpheniramine Chronic Obstructive Pulmonary Disease

Applies to: Chronic Obstructive Pulmonary Disease

It has been suggested that the anticholinergic effect of antihistamines may reduce the volume and cause thickening of bronchial secretions, resulting in obstruction of respiratory tract. Some manufacturers and clinicians recommend that therapy with antihistamines be administered cautiously in patients with asthma or chronic obstructive pulmonary disease.

Moderate

clorazepate Depression

Applies to: Depression

Benzodiazepines depress the central nervous system and may cause or exacerbate mental depression and cause suicidal behavior and ideation. Episodes of mania and hypomania have also been reported in depressed patients treated with some of these agents. Therapy with benzodiazepines should be administered cautiously in patients with a history of depression or other psychiatric disorders. Patients should be monitored for any changes in mood or behavior. It may be prudent to refrain from dispensing large quantities of medication to these patients.

Moderate

phenylephrine Diabetes Mellitus

Applies to: Diabetes Mellitus

Sympathomimetic agents may cause increases in blood glucose concentrations. These effects are usually transient and slight but may be significant with dosages higher than those normally recommended. Therapy with sympathomimetic agents should be administered cautiously in patients with diabetes mellitus. Closer monitoring of blood glucose concentrations may be appropriate.

Moderate

chlorpheniramine Gastrointestinal Obstruction

Applies to: Gastrointestinal Obstruction

Antihistamines often have anticholinergic activity, to which elderly patients are particularly sensitive. Therapy with antihistamines should be administered cautiously, if at all, in patients with preexisting conditions that are likely to be exacerbated by anticholinergic activity, such as urinary retention or obstruction; angle-closure glaucoma, untreated intraocular hypertension, or uncontrolled primary open-angle glaucoma; and gastrointestinal obstructive disorders. Conventional, first-generation antihistamines such as the ethanolamines (bromodiphenhydramine, carbinoxamine, clemastine, dimenhydrinate, diphenhydramine, doxylamine, phenyltoloxamine) tend to exhibit substantial anticholinergic effects. In contrast, the newer, relatively nonsedating antihistamines (e.g., cetirizine, fexofenadine, loratadine) reportedly have low to minimal anticholinergic activity at normally recommended dosages and may be appropriate alternatives.

Moderate

phenylephrine Glaucoma/Intraocular Hypertension

Applies to: Glaucoma / Intraocular Hypertension

Sympathomimetic agents can induce transient mydriasis via stimulation of alpha-1 adrenergic receptors. In patients with anatomically narrow angles or narrow-angle glaucoma, pupillary dilation can provoke an acute attack. In patients with other forms of glaucoma, mydriasis may occasionally increase intraocular pressure. Therapy with sympathomimetic agents should be administered cautiously in patients with or predisposed to glaucoma, particularly narrow-angle glaucoma.

Moderate

chlorpheniramine Glaucoma/Intraocular Hypertension

Applies to: Glaucoma / Intraocular Hypertension

Antihistamines often have anticholinergic activity, to which elderly patients are particularly sensitive. Therapy with antihistamines should be administered cautiously, if at all, in patients with preexisting conditions that are likely to be exacerbated by anticholinergic activity, such as urinary retention or obstruction; angle-closure glaucoma, untreated intraocular hypertension, or uncontrolled primary open-angle glaucoma; and gastrointestinal obstructive disorders. Conventional, first-generation antihistamines such as the ethanolamines (bromodiphenhydramine, carbinoxamine, clemastine, dimenhydrinate, diphenhydramine, doxylamine, phenyltoloxamine) tend to exhibit substantial anticholinergic effects. In contrast, the newer, relatively nonsedating antihistamines (e.g., cetirizine, fexofenadine, loratadine) reportedly have low to minimal anticholinergic activity at normally recommended dosages and may be appropriate alternatives.

Moderate

clorazepate Hyperkinetic Syndrome of Childhood

Applies to: Hyperkinetic Syndrome of Childhood

Paradoxical reactions, including excitability, irritability, aggressive behavior, agitation, nervousness, hostility, anxiety, sleep disturbances, nightmares and vivid dreams, have been reported with the use of benzodiazepines in psychiatric patients and pediatric patients with hyperactive aggressive disorders. Such patients should be monitored for signs of paradoxical stimulation during therapy with benzodiazepines. The manufacturers do not recommend the use of benzodiazepines for the treatment of psychosis.

Moderate

chlorpheniramine Hyperthyroidism

Applies to: Hyperthyroidism

Antihistamines may infrequently cause cardiovascular adverse effects related to their anticholinergic and local anesthetic (quinidine-like) activities. Tachycardia, palpitation, ECG changes, arrhythmias, hypotension, and hypertension have been reported. Although these effects are uncommon and usually limited to overdosage situations, the manufacturers and some clinicians recommend that therapy with antihistamines be administered cautiously in patients with cardiovascular disease, hypertension, and/or hyperthyroidism.

Moderate

chlorpheniramine Hypotension

Applies to: Hypotension

Antihistamines may infrequently cause cardiovascular adverse effects related to their anticholinergic and local anesthetic (quinidine-like) activities. Tachycardia, palpitation, ECG changes, arrhythmias, hypotension, and hypertension have been reported. Although these effects are uncommon and usually limited to overdosage situations, the manufacturers and some clinicians recommend that therapy with antihistamines be administered cautiously in patients with cardiovascular disease, hypertension, and/or hyperthyroidism.

Moderate

chlorpheniramine Liver Disease

Applies to: Liver Disease

Limited pharmacokinetic data are available for the older, first-generation antihistamines. Many appear to be primarily metabolized by the liver, and both parent drugs and metabolites are excreted in the urine. Patients with renal and/or liver disease may be at greater risk for adverse effects from antihistamines due to drug and metabolite accumulation. Therapy with antihistamines should be administered cautiously in such patients. Lower initial dosages may be appropriate.

Moderate

clorazepate Obesity

Applies to: Obesity

The plasma half-lives of benzodiazepines may be prolonged in obese patients, presumably due to increased distribution into fat. Marked increases in distribution (> 100%) have been reported for diazepam and midazolam, and moderate increases (25% to 100%) for alprazolam, lorazepam, and oxazepam. Therapy with benzodiazepines should be administered cautiously in obese patients, with careful monitoring of CNS status. Longer dosing intervals may be appropriate. When dosing by weight, loading doses should be based on actual body weight, while maintenance dose should be based on ideal body weight to avoid toxicity.

Moderate

phenylephrine Prostate Tumor

Applies to: Prostate Tumor

Sympathomimetic agents may cause or worsen urinary difficulty in patients with prostate enlargement due to smooth muscle contraction in the bladder neck via stimulation of alpha-1 adrenergic receptors. Therapy with sympathomimetic agents should be administered cautiously in patients with hypertrophy or neoplasm of the prostate.

Moderate

clorazepate Psychosis

Applies to: Psychosis

Benzodiazepines depress the central nervous system and may cause or exacerbate mental depression and cause suicidal behavior and ideation. Episodes of mania and hypomania have also been reported in depressed patients treated with some of these agents. Therapy with benzodiazepines should be administered cautiously in patients with a history of depression or other psychiatric disorders. Patients should be monitored for any changes in mood or behavior. It may be prudent to refrain from dispensing large quantities of medication to these patients.

Moderate

clorazepate Psychosis

Applies to: Psychosis

Paradoxical reactions, including excitability, irritability, aggressive behavior, agitation, nervousness, hostility, anxiety, sleep disturbances, nightmares and vivid dreams, have been reported with the use of benzodiazepines in psychiatric patients and pediatric patients with hyperactive aggressive disorders. Such patients should be monitored for signs of paradoxical stimulation during therapy with benzodiazepines. The manufacturers do not recommend the use of benzodiazepines for the treatment of psychosis.

Moderate

chlorpheniramine Renal Dysfunction

Applies to: Renal Dysfunction

Limited pharmacokinetic data are available for the older, first-generation antihistamines. Many appear to be primarily metabolized by the liver, and both parent drugs and metabolites are excreted in the urine. Patients with renal and/or liver disease may be at greater risk for adverse effects from antihistamines due to drug and metabolite accumulation. Therapy with antihistamines should be administered cautiously in such patients. Lower initial dosages may be appropriate.

Moderate

chlorpheniramine Urinary Retention

Applies to: Urinary Retention

Antihistamines often have anticholinergic activity, to which elderly patients are particularly sensitive. Therapy with antihistamines should be administered cautiously, if at all, in patients with preexisting conditions that are likely to be exacerbated by anticholinergic activity, such as urinary retention or obstruction; angle-closure glaucoma, untreated intraocular hypertension, or uncontrolled primary open-angle glaucoma; and gastrointestinal obstructive disorders. Conventional, first-generation antihistamines such as the ethanolamines (bromodiphenhydramine, carbinoxamine, clemastine, dimenhydrinate, diphenhydramine, doxylamine, phenyltoloxamine) tend to exhibit substantial anticholinergic effects. In contrast, the newer, relatively nonsedating antihistamines (e.g., cetirizine, fexofenadine, loratadine) reportedly have low to minimal anticholinergic activity at normally recommended dosages and may be appropriate alternatives.

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.