Skip to main content

Drug Interactions between Cassipa and leuprolide / norethindrone

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Moderate

buprenorphine leuprolide

Applies to: Cassipa (buprenorphine / naloxone) and leuprolide / norethindrone

GENERALLY AVOID: Long-term androgen deprivation therapy (ADT) can prolong the QT interval. Coadministration of ADT with other agents that may prolong the QT interval could also result in additive effects and an increased risk of ventricular arrhythmias including torsade de pointes and sudden death. The risk may be increased in patients with certain underlying risk factors like congenital long QT syndrome, cardiac disease, and electrolyte disturbances (e.g., hypokalemia, hypomagnesemia). Studies in young men have shown that endogenous serum testosterone levels are inversely associated with QTc (QT interval corrected for heart rate) duration. Clinical trials in men with low serum testosterone levels have reported testosterone administration being associated with a shortening of QTc. Likewise, studies using ADT have shown that it may prolong the QT interval; however, this effect may vary by drug, dose, or even each drug class that can be used to reduce testosterone levels. A clinical study comparing abarelix to a luteinizing hormone-releasing hormone agonist plus nonsteroidal antiandrogen therapy found that both therapies prolonged the mean Fridericia-corrected QT interval (QTcF) by more than 10 msec from baseline. Approximately 20% of patients in both groups had either changes from baseline QTc of >30 msec or end-of-treatment QTc values >450 msec. Similarly, a study comparing degarelix to leuprolide found that approximately 20% of patients on each drug had QT/QTc intervals >450 msec after 1 year of treatment. From baseline to end of study, the median change in QTcF was 12.3 msec for degarelix and 16.7 msec for leuprolide. Some drugs used to lower testosterone levels may also have other side effects that can predispose a patient to QT prolongation and torsade de pointes. For example, inhibitors of 17 alpha-hydroxylase/C17,20-lyase (CYP17) like abiraterone may cause hypokalemia as a result of increased mineralocorticoid levels. Clinical data on ADT prolonging the QT interval in women and children are lacking.

MANAGEMENT: The benefits of androgen deprivation therapy (ADT) should be carefully assessed against the potential risk in patients receiving other drugs known to prolong the QT interval. Electrolyte abnormalities should be corrected prior to initiating therapy, and monitoring of electrocardiograms and electrolytes may be advisable. The manufacturer's labeling as well as current clinical guidelines should be consulted for monitoring recommendations.

References

  1. "Product Information. Lupron (leuprolide)." TAP Pharmaceuticals Inc PROD (2002):
  2. "Product Information. Zoladex (goserelin)." Astra-Zeneca Pharmaceuticals PROD (2001):
  3. "Product Information. Trelstar (triptorelin)." Pharmacia and Upjohn PROD (2001):
  4. "Product Information. Eligard (leuprolide)." Sanofi Winthrop Pharmaceuticals (2002):
  5. "Product Information. Plenaxis (abarelix)." Praecis Pharmaceuticals Inc (2003):
  6. Cerner Multum, Inc. "UK Summary of Product Characteristics." O 0
  7. "Product Information. Vantas (histrelin)." Endo Pharmaceuticals (formally Indevus Pharmaceuticals Inc) (2010):
  8. "Product Information. Firmagon (degarelix)." Ferring Pharmaceuticals Inc (2013):
  9. Krishna KB, Fuqua JS, rogol ad, et al. "Use of gonadotropin-releasing hormone analogs in children: update by an international consortium." Horm Res Paediatr 91 (2019): 357-72
  10. Lazzerini PE, Bertolozzi I, Acampa M, et al. "Androgen deprivation therapy for prostatic cancer in patients with torsades de pointes. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7239032/" (2023):
  11. Gagliano-Juca T, Travison TG, kantoff pw, et al. "Androgen deprivation therapy is associated with prolongation of QTc interval in men with prostate cancer." J Endocr Soc 2 (2018): 485-96
  12. Gheorghe GS, Hodorogea AS, Ciobanu A, Nanea IT, Gheorghe ACD "Androgen deprivation therapy, hypogonadism and cardiovascular toxicity in men with advanced prostate cancer." Curr Oncol 28 (2021): 3331-46
  13. "Product Information. Firmagon (degarelix)." Ferring Pharmaceuticals Pty Ltd (2023):
  14. "Product Information. Firmagon (degarelix)." Ferring Pharmaceuticals Inc (2020):
View all 14 references

Switch to consumer interaction data

Drug and food interactions

Major

buprenorphine food

Applies to: Cassipa (buprenorphine / naloxone)

GENERALLY AVOID: Concomitant use of buprenorphine with benzodiazepines or other central nervous system (CNS) depressants (e.g., nonbenzodiazepine sedatives/hypnotics, anxiolytics, muscle relaxants, general anesthetics, antipsychotics, other opioids, alcohol) may increase the risk of buprenorphine overdose, severe respiratory depression, coma, and death. Reported cases have primarily occurred in the setting of buprenorphine maintenance treatment for opiate addiction, and many, but not all, involved abuse or misuse of buprenorphine including intravenous self-injection. The mechanism of interaction probably involves some degree of additive pharmacologic effects. Preclinical studies also suggest that benzodiazepines can alter the usual ceiling effect on buprenorphine-induced respiratory depression and render the respiratory effects of buprenorphine appear similar to those of full opioid agonists. Coadministration of buprenorphine with some CNS depressants such as alcohol, benzodiazepines, and phenothiazines may also increase the risk of hypotension.

MANAGEMENT: The use of opioids in conjunction with benzodiazepines or other CNS depressants should generally be avoided unless alternative treatment options are inadequate. If coadministration is necessary, the dosage and duration of each drug should be limited to the minimum required to achieve desired clinical effect. Patients should be monitored closely for signs and symptoms of respiratory depression and sedation, and advised to avoid driving or operating hazardous machinery until they know how these medications affect them. Extreme caution is advised when prescribing buprenorphine to patients who are addicted to opioids and also abusing benzodiazepines or alcohol. Due to potential risk of overdose and death, dependence on sedative-hypnotics such as benzodiazepines or alcohol is considered a relative contraindication for office-based buprenorphine treatment of opioid addiction. For patients who have been receiving extended therapy with both an opioid and a benzodiazepine and require discontinuation of either medication, a gradual tapering of dose is advised, since abrupt withdrawal may lead to withdrawal symptoms. Severe cases of benzodiazepine withdrawal, primarily in patients who have received excessive doses over a prolonged period, may result in numbness and tingling of extremities, hypersensitivity to light and noise, hallucinations, and epileptic seizures.

References

  1. "Product Information. Suboxone (buprenorphine-naloxone)." Reckitt and Colman Pharmaceuticals Inc (2002):
  2. Kilicarslan T, Sellers EM "Lack of interaction of buprenorphine with flunitrazepam metabolism." Am J Psychiatry 157 (2000): 1164-6
  3. Reynaud M, Petit G, Potard D, Courty P "Six deaths linked to concomitant use of buprenorphine and benzodiazepines." Addiction 93 (1998): 1385-92
  4. Tracqui A, Kintz P, Ludes B "Buprenorphine-related deaths among drug addicts in France: a report on 20 fatalities." J Anal Toxicol 22 (1998): 430-4
  5. Reynaud M, Tracqui A, Petit G, Potard D, Courty P "Six deaths linked to misuse of buprenorphine-benzodiazepine combinations." Am J Psychiatry 155 (1998): 448-9
  6. Kintz P "A new series of 13 buprenorphine-related deaths." Clin Biochem 35 (2002): 513-6
  7. Martin HA "The possible consequences of combining lorazepam and buprenorphine/naloxone: a case review." J Emerg Nurs 37 (2011): 200-2
  8. Hakkinen M, Launiainen T, Vuori E, Ojanpera I "Benzodiazepines and alcohol are associated with cases of fatal buprenorphine poisoning." Eur J Clin Pharmacol 68 (2012): 301-9
  9. Substance Abuse and Mental Health Services Administration (US) "Clinical Guidelines for the Use of Buprenorphine in the Treatment of Opioid Addiction. Treatment Improvement Protocol (TIP) Series, No. 40 http://www.ncbi.nlm.nih.gov/books/NBK64245/" (2013):
  10. Schuman-Olivier Z, Hoeppner BB, Weiss RD, Borodovsky J, Shaffer HJ, Albanese MJ "Benzodiazepine use during buprenorphine treatment for opioid dependence: clinical and safety outcomes." Drug Alcohol Depend 132 (2013): 580-6
  11. Ferrant O, Papin F, Clin B, et al. "Fatal poisoning due to snorting buprenorphine and alcohol consumption." Forensic Sci Int 204 (2011): e8-11
  12. Pirnay S, Borron SW, Giudicelli CP, Tourneau J, Baud FJ, Ricordel I "A critical review of the causes of death among post-morten toxicological investigations: analysis of 34 buprenorphine-associated and 35 methadone-associated deaths." Addiction 99 (2004): 978-88
  13. Kintz P "Deaths involving buprenorphine: a compendium of French cases." Forensic Sci Int 121 (2001): 65-9
  14. Sekar M, Mimpriss TJ "Buprenorphine, benzodiazepines and prolonged respiratory depression." Anaesthesia 42 (1987): 567-8
  15. Gueye PN, Borron SW, Risede P, et al. "Buprenorphine and midazolalm act in combination to depress respiration in rats." Toxicol Sci 65 (2002): 107-14
  16. US Food and Drug Administration "FDA warns about serious risks and death when combining opioid pain or cough medicines with benzodiazepines; requires its strongest warning. http://www.fda.gov/downloads/Drugs/DrugSafety/UCM518672.pdf" (2016):
View all 16 references

Switch to consumer interaction data

Moderate

norethindrone food

Applies to: leuprolide / norethindrone

MONITOR: Grapefruit juice may increase the plasma concentrations of orally administered drugs that are substrates of the CYP450 3A4 isoenzyme. The proposed mechanism is inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall by certain compounds present in grapefruit. Because grapefruit juice inhibits primarily intestinal rather than hepatic CYP450 3A4, the magnitude of interaction is greatest for those drugs that undergo significant presystemic metabolism by CYP450 3A4 (i.e., drugs with low oral bioavailability). In general, the effect of grapefruit juice is concentration-, dose- and preparation-dependent, and can vary widely among brands. Certain preparations of grapefruit juice (e.g., high dose, double strength) have sometimes demonstrated potent inhibition of CYP450 3A4, while other preparations (e.g., low dose, single strength) have typically demonstrated moderate inhibition. Pharmacokinetic interactions involving grapefruit juice are also subject to a high degree of interpatient variability, thus the extent to which a given patient may be affected is difficult to predict.

MANAGEMENT: Patients who regularly consume grapefruit or grapefruit juice should be monitored for adverse effects and altered plasma concentrations of drugs that undergo significant presystemic metabolism by CYP450 3A4. Grapefruit and grapefruit juice should be avoided if an interaction is suspected. Orange juice is not expected to interact with these drugs.

References

  1. Edgar B, Bailey D, Bergstrand R, et al. "Acute effects of drinking grapefruit juice on the pharmacokinetics and dynamics on felodipine and its potential clinical relevance." Eur J Clin Pharmacol 42 (1992): 313-7
  2. Jonkman JH, Sollie FA, Sauter R, Steinijans VW "The influence of caffeine on the steady-state pharmacokinetics of theophylline." Clin Pharmacol Ther 49 (1991): 248-55
  3. Bailey DG, Arnold JM, Munoz C, Spence JD "Grapefruit juice--felodipine interaction: mechanism, predictability, and effect of naringin." Clin Pharmacol Ther 53 (1993): 637-42
  4. Bailey DG, Arnold JMO, Spence JD "Grapefruit juice and drugs - how significant is the interaction." Clin Pharmacokinet 26 (1994): 91-8
  5. Sigusch H, Hippius M, Henschel L, Kaufmann K, Hoffmann A "Influence of grapefruit juice on the pharmacokinetics of a slow release nifedipine formulation." Pharmazie 49 (1994): 522-4
  6. Bailey DG, Arnold JM, Strong HA, Munoz C, Spence JD "Effect of grapefruit juice and naringin on nisoldipine pharmacokinetics." Clin Pharmacol Ther 54 (1993): 589-94
  7. Yamreudeewong W, Henann NE, Fazio A, Lower DL, Cassidy TG "Drug-food interactions in clinical practice." J Fam Pract 40 (1995): 376-84
  8. "Grapefruit juice interactions with drugs." Med Lett Drugs Ther 37 (1995): 73-4
  9. Hukkinen SK, Varhe A, Olkkola KT, Neuvonen PJ "Plasma concentrations of triazolam are increased by concomitant ingestion of grapefruit juice." Clin Pharmacol Ther 58 (1995): 127-31
  10. Min DI, Ku YM, Geraets DR, Lee HC "Effect of grapefruit juice on the pharmacokinetics and pharmacodynamics of quinidine in healthy volunteers." J Clin Pharmacol 36 (1996): 469-76
  11. Majeed A, Kareem A "Effect of grapefruit juice on cyclosporine pharmacokinetics." Pediatr Nephrol 10 (1996): 395
  12. Clifford CP, Adams DA, Murray S, Taylor GW, Wilkins MR, Boobis AR, Davies DS "Pharmacokinetic and cardiac effects of terfenadine after inhibition of its metabolism by grapefruit juice." Br J Clin Pharmacol 42 (1996): p662
  13. Josefsson M, Zackrisson AL, Ahlner J "Effect of grapefruit juice on the pharmacokinetics of amlodipine in healthy volunteers." Eur J Clin Pharmacol 51 (1996): 189-93
  14. Kantola T, Kivisto KT, Neuvonen PJ "Grapefruit juice greatly increases serum concentrations of lovastatin and lovastatin acid." Clin Pharmacol Ther 63 (1998): 397-402
  15. Ozdemir M, Aktan Y, Boydag BS, Cingi MI, Musmul A "Interaction between grapefruit juice and diazepam in humans." Eur J Drug Metab Pharmacokinet 23 (1998): 55-9
  16. Bailey DG, Malcolm J, Arnold O, Spence JD "Grapefruit juice-drug interactions." Br J Clin Pharmacol 46 (1998): 101-10
  17. Bailey DG, Kreeft JH, Munoz C, Freeman DJ, Bend JR "Grapefruit juice felodipine interaction: Effect of naringin and 6',7'-dihydroxybergamottin in humans." Clin Pharmacol Ther 64 (1998): 248-56
  18. Garg SK, Kumar N, Bhargava VK, Prabhakar SK "Effect of grapefruit juice on carbamazepine bioavailability in patients with epilepsy." Clin Pharmacol Ther 64 (1998): 286-8
  19. Lilja JJ, Kivisto KT, Neuvonen PJ "Grapefruit juice-simvastatin interaction: Effect on serum concentrations of simvastatin, simvastatin acid, and HMG-CoA reductase inhibitors." Clin Pharmacol Ther 64 (1998): 477-83
  20. Fuhr U, Maier-Bruggemann A, Blume H, et al. "Grapefruit juice increases oral nimodipine bioavailability." Int J Clin Pharmacol Ther 36 (1998): 126-32
  21. Lilja JJ, Kivisto KT, Neuvonen PJ "Grapefruit juice increases serum concentrations of atorvastatin and has no effect on pravastatin." Clin Pharmacol Ther 66 (1999): 118-27
  22. Eagling VA, Profit L, Back DJ "Inhibition of the CYP3A4-mediated metabolism and P-glycoprotein-mediated transport of the HIV-I protease inhibitor saquinavir by grapefruit juice components." Br J Clin Pharmacol 48 (1999): 543-52
  23. Damkier P, Hansen LL, Brosen K "Effect of diclofenac, disulfiram, itraconazole, grapefruit juice and erythromycin on the pharmacokinetics of quinidine." Br J Clin Pharmacol 48 (1999): 829-38
  24. Lee AJ, Chan WK, Harralson AF, Buffum J, Bui BCC "The effects of grapefruit juice on sertraline metabolism: An in vitro and in vivo study." Clin Ther 21 (1999): 1890-9
  25. Dresser GK, Spence JD, Bailey DG "Pharmacokinetic-pharmacodynamic consequences and clinical relevance of cytochrome P450 3A4 inhibition." Clin Pharmacokinet 38 (2000): 41-57
  26. Gunston GD, Mehta U "Potentially serious drug interactions with grapefruit juice." S Afr Med J 90 (2000): 41
  27. Takanaga H, Ohnishi A, Maatsuo H, et al. "Pharmacokinetic analysis of felodipine-grapefruit juice interaction based on an irreversible enzyme inhibition model." Br J Clin Pharmacol 49 (2000): 49-58
  28. Libersa CC, Brique SA, Motte KB, et al. "Dramatic inhibition of amiodarone metabolism induced by grapefruit juice." Br J Clin Pharmacol 49 (2000): 373-8
  29. Bailey DG, Dresser GR, Kreeft JH, Munoz C, Freeman DJ, Bend JR "Grapefruit-felodipine interaction: Effect of unprocessed fruit and probable active ingredients." Clin Pharmacol Ther 68 (2000): 468-77
  30. Zaidenstein R, Soback S, Gips M, Avni B, Dishi V, Weissgarten Y, Golik A, Scapa E "Effect of grapefruit juice on the pharmacokinetics of losartan and its active metabolite E3174 in healthy volunteers." Ther Drug Monit 23 (2001): 369-73
  31. Sato J, Nakata H, Owada E, Kikuta T, Umetsu M, Ito K "Influence of usual intake of dietary caffeine on single-dose kinetics of theophylline in healthy human subjects." Eur J Clin Pharmacol 44 (1993): 295-8
  32. Flanagan D "Understanding the grapefruit-drug interaction." Gen Dent 53 (2005): 282-5; quiz 286
View all 32 references

Switch to consumer interaction data

Minor

norethindrone food

Applies to: leuprolide / norethindrone

The central nervous system effects and blood levels of ethanol may be increased in patients taking oral contraceptives, although data are lacking and reports are contradictory. The mechanism may be due to enzyme inhibition. Consider counseling women about this interaction which is unpredictable.

References

  1. Hobbes J, Boutagy J, Shenfield GM "Interactions between ethanol and oral contraceptive steroids." Clin Pharmacol Ther 38 (1985): 371-80

Switch to consumer interaction data

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Loading...
QR code containing a link to this page

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.