Skip to main content

Drug Interactions between caffeine / pheniramine / phenylephrine / sodium citrate / sodium salicylate and pazopanib

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Moderate

phenylephrine caffeine

Applies to: caffeine / pheniramine / phenylephrine / sodium citrate / sodium salicylate and caffeine / pheniramine / phenylephrine / sodium citrate / sodium salicylate

MONITOR: Coadministration of two or more sympathomimetic agents may increase the risk of adverse effects such as nervousness, irritability, and increased heart rate. Central nervous system (CNS) stimulants, particularly amphetamines, can potentiate the adrenergic response to vasopressors and other sympathomimetic agents. Additive increases in blood pressure and heart rate may occur due to enhanced peripheral sympathetic activity.

MANAGEMENT: Caution is advised if two or more sympathomimetic agents are coadministered. Pulse and blood pressure should be closely monitored.

References (7)
  1. Rosenblatt JE, Lake CR, van Kammen DP, Ziegler MG, Bunney WE Jr (1979) "Interactions of amphetamine, pimozide, and lithium on plasma norepineophrine and dopamine-beta-hydroxylase in schizophrenic patients." Psychiatry Res, 1, p. 45-52
  2. Cavanaugh JH, Griffith JD, Oates JA (1970) "Effect of amphetamine on the pressor response to tyramine: formation of p-hydroxynorephedrine from amphetamine in man." Clin Pharmacol Ther, 11, p. 656
  3. (2001) "Product Information. Adderall (amphetamine-dextroamphetamine)." Shire Richwood Pharmaceutical Company Inc
  4. (2001) "Product Information. Tenuate (diethylpropion)." Aventis Pharmaceuticals
  5. (2001) "Product Information. Sanorex (mazindol)." Novartis Pharmaceuticals
  6. (2001) "Product Information. Focalin (dexmethylphenidate)." Mikart Inc
  7. (2002) "Product Information. Strattera (atomoxetine)." Lilly, Eli and Company
Moderate

sodium salicylate sodium citrate

Applies to: caffeine / pheniramine / phenylephrine / sodium citrate / sodium salicylate and caffeine / pheniramine / phenylephrine / sodium citrate / sodium salicylate

MONITOR: Agents that cause urinary alkalinization can reduce serum salicylate concentrations in patients receiving anti-inflammatory dosages of aspirin or other salicylates. The mechanism involves reduction in salicylate renal tubular reabsorption due to increased urinary pH, resulting in increased renal salicylate clearance especially above urine pH of 7. This interaction is sometimes exploited in the treatment of salicylate toxicity.

MANAGEMENT: Patients treated chronically with urinary alkalinizers and large doses of salicylates (i.e. 3 g/day or more) should be monitored for potentially diminished or inadequate analgesic and anti-inflammatory effects, and the salicylate dosage adjusted if necessary.

References (5)
  1. Berg KJ (1977) "Acute acetylsalicylic acid poisoning: treatment with forced alkaline diuresis and diuretics." Eur J Clin Pharmacol, 12, p. 111-6
  2. Prescott LF, Balali-Mood M, Critchley JA, Johnstone AF, Proudfoot AT (1982) "Diuresis or urinary alkalinisation for salicylate poisoning?" Br Med J (Clin Res Ed), 285, p. 1383-6
  3. Balali-Mood M, Prescott LF (1980) "Failure of alkaline diuresis to enhance diflunisal elimination." Br J Clin Pharmacol, 10, p. 163-5
  4. Berg KJ (1977) "Acute effects of acetylsalicylic acid in patients with chronic renal insufficiency." Eur J Clin Pharmacol, 11, p. 111-6
  5. Brouwers JRBJ, Desmet PAGM (1994) "Pharmacokinetic-pharmacodynamic drug interactions with nonsteroidal anti-inflammatory drugs." Clin Pharmacokinet, 27, p. 462-85
Moderate

sodium citrate PAZOPanib

Applies to: caffeine / pheniramine / phenylephrine / sodium citrate / sodium salicylate and pazopanib

GENERALLY AVOID: Coadministration with drugs that increase gastric pH may significantly decrease the oral bioavailability of pazopanib and reduce its concentrations in plasma. The solubility of pazopanib is pH-dependent, thus an increase in pH may interfere with its absorption. According to the product labeling, pazopanib is very slightly soluble at pH 1 and practically insoluble above pH 4 in aqueous media. When pazopanib (800 mg once daily in the morning) was coadministered with esomeprazole (40 mg once daily in the evening) for 5 days in 12 patients with advanced solid tumors, mean steady-state pazopanib peak plasma concentration (Cmax) and systemic exposure (AUC) decreased by approximately 40% each. The AUCs of three metabolites were also decreased. Mean steady-state trough concentration of pazopanib was reduced to 17.3 mcg/mL, which is close to the reported threshold of >=15 mcg/mL for clinical efficacy as suggested by a phase I trial of pazopanib. However, the potential for subtherapeutic pazopanib exposure in some patients cannot be excluded.

MANAGEMENT: Concomitant use of pazopanib with drugs that increase gastric pH should generally be avoided. If acid-suppression therapy is required, short-acting antacids should be considered, with dosing separated by several hours from pazopanib dosing. Some experts recommend administering pazopanib at least 1 hour before or 2 hours after antacids.

References (6)
  1. Cerner Multum, Inc. "UK Summary of Product Characteristics."
  2. EMEA. European Medicines Agency (2007) EPARs. European Union Public Assessment Reports. http://www.ema.europa.eu/ema/index.jsp?curl=pages/includes/medicines/medicines_landingpage.jsp&mid
  3. (2009) "Product Information. Votrient (pazopanib)." GlaxoSmithKline
  4. Tan AR, Gibbon DG, Stein MN, et al. (2013) "Effects of ketoconazole and esomeprazole on the pharmacokinetics of pazopanib in patients with solid tumors." Cancer Chemother Pharmacol, 71, p. 1635-43
  5. van Leeuwen RW, van Gelder T, Mathijssen RH, Jansman FG (2014) "Drug-drug interactions with tyrosine-kinase inhibitors: a clinical perspective." Lancet Oncol, 15, e315-e326
  6. Yu G, Zheng QS, Wang DX, Zhou HH, Li GF (2014) "Drug interactions between tyrosine-kinase inhibitors and acid suppressive agents: more than meets the eye." Lancet Oncol, 15, e469-70

Drug and food interactions

Major

PAZOPanib food

Applies to: pazopanib

GENERALLY AVOID: Grapefruit juice may increase the plasma concentrations of pazopanib. The proposed mechanism is inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall by certain compounds present in grapefruits. Although not studied, the interaction may increase the risk of QT interval prolongation and torsade de pointes arrhythmia as well as severe and fatal hepatotoxicity associated with the use of pazopanib.

ADJUST DOSING INTERVAL: Food increases the oral bioavailability of pazopanib. The mechanism of interaction is unknown. Administration of pazopanib with a high-fat or low-fat meal results in an approximately 2-fold increase in peak plasma concentration (Cmax) and systemic exposure (AUC).

MANAGEMENT: Patients treated with pazopanib should avoid consumption of grapefruit, grapefruit juice, and any supplement containing grapefruit extract. Pazopanib should be administered at least one hour before or two hours after a meal.

References (1)
  1. (2009) "Product Information. Votrient (pazopanib)." GlaxoSmithKline
Moderate

pheniramine food

Applies to: caffeine / pheniramine / phenylephrine / sodium citrate / sodium salicylate

GENERALLY AVOID: Alcohol may potentiate some of the pharmacologic effects of CNS-active agents. Use in combination may result in additive central nervous system depression and/or impairment of judgment, thinking, and psychomotor skills.

MANAGEMENT: Patients receiving CNS-active agents should be warned of this interaction and advised to avoid or limit consumption of alcohol. Ambulatory patients should be counseled to avoid hazardous activities requiring complete mental alertness and motor coordination until they know how these agents affect them, and to notify their physician if they experience excessive or prolonged CNS effects that interfere with their normal activities.

References (4)
  1. Warrington SJ, Ankier SI, Turner P (1986) "Evaluation of possible interactions between ethanol and trazodone or amitriptyline." Neuropsychobiology, 15, p. 31-7
  2. Gilman AG, eds., Nies AS, Rall TW, Taylor P (1990) "Goodman and Gilman's the Pharmacological Basis of Therapeutics." New York, NY: Pergamon Press Inc.
  3. (2012) "Product Information. Fycompa (perampanel)." Eisai Inc
  4. (2015) "Product Information. Rexulti (brexpiprazole)." Otsuka American Pharmaceuticals Inc
Moderate

phenylephrine food

Applies to: caffeine / pheniramine / phenylephrine / sodium citrate / sodium salicylate

MONITOR: Coadministration of two or more sympathomimetic agents may increase the risk of adverse effects such as nervousness, irritability, and increased heart rate. Central nervous system (CNS) stimulants, particularly amphetamines, can potentiate the adrenergic response to vasopressors and other sympathomimetic agents. Additive increases in blood pressure and heart rate may occur due to enhanced peripheral sympathetic activity.

MANAGEMENT: Caution is advised if two or more sympathomimetic agents are coadministered. Pulse and blood pressure should be closely monitored.

References (7)
  1. Rosenblatt JE, Lake CR, van Kammen DP, Ziegler MG, Bunney WE Jr (1979) "Interactions of amphetamine, pimozide, and lithium on plasma norepineophrine and dopamine-beta-hydroxylase in schizophrenic patients." Psychiatry Res, 1, p. 45-52
  2. Cavanaugh JH, Griffith JD, Oates JA (1970) "Effect of amphetamine on the pressor response to tyramine: formation of p-hydroxynorephedrine from amphetamine in man." Clin Pharmacol Ther, 11, p. 656
  3. (2001) "Product Information. Adderall (amphetamine-dextroamphetamine)." Shire Richwood Pharmaceutical Company Inc
  4. (2001) "Product Information. Tenuate (diethylpropion)." Aventis Pharmaceuticals
  5. (2001) "Product Information. Sanorex (mazindol)." Novartis Pharmaceuticals
  6. (2001) "Product Information. Focalin (dexmethylphenidate)." Mikart Inc
  7. (2002) "Product Information. Strattera (atomoxetine)." Lilly, Eli and Company
Minor

caffeine food

Applies to: caffeine / pheniramine / phenylephrine / sodium citrate / sodium salicylate

The effect of grapefruit juice on the pharmacologic activity of caffeine is controversial. One report suggests that grapefruit juice increases the effect of caffeine. The proposed mechanism is inhibition of cytochrome P-450 metabolism of caffeine. However, a well-conducted pharmacokinetic/pharmacodynamic study did not demonstrate this effect. The clinical significance of this potential interaction is unknown.

References (2)
  1. (1995) "Grapefruit juice interactions with drugs." Med Lett Drugs Ther, 37, p. 73-4
  2. Maish WA, Hampton EM, Whitsett TL, Shepard JD, Lovallo WR (1996) "Influence of grapefruit juice on caffeine pharmacokinetics and pharmacodynamics." Pharmacotherapy, 16, p. 1046-52

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.