Drug Interactions between bismuth subsalicylate / metronidazole / tetracycline and methotrexate
This report displays the potential drug interactions for the following 2 drugs:
- bismuth subsalicylate/metronidazole/tetracycline
- methotrexate
Interactions between your drugs
methotrexate bismuth subsalicylate
Applies to: methotrexate and bismuth subsalicylate / metronidazole / tetracycline
GENERALLY AVOID: Coadministration with nonsteroidal anti-inflammatory drugs (NSAIDs) including salicylates may increase the plasma concentrations and toxicities of methotrexate. The proposed mechanism is NSAID inhibition of the renal elimination of methotrexate and its metabolite, 7-hydroxymethotrexate, although data from pharmacokinetic studies are inconsistent and conflicting. Displacement of methotrexate binding to serum albumin by salicylates and various other NSAIDs may also play a secondary role. Unexpectedly severe and sometimes fatal bone marrow suppression, aplastic anemia, gastrointestinal toxicity, and nephrotoxicity have been reported during concomitant administration of methotrexate with NSAIDs. The risk is greatest in patients receiving high dosages of methotrexate and those with renal impairment. In clinical studies, methotrexate at dosages of 7.5 to 15 mg/week has been used without apparent problems in patients with rheumatoid arthritis who also received constant dosage regimens of NSAIDs. However, there have been occasional reports of stomatitis, pneumonitis, bone marrow toxicity, and fatality in patients receiving low-dose weekly methotrexate with daily NSAIDs.
MANAGEMENT: NSAIDs including salicylates should generally not be administered prior to or concomitantly with high dosages of methotrexate, such as those used to treat osteosarcoma. Caution should be exercised when NSAIDs are administered concomitantly with lower dosages of methotrexate. Close monitoring for signs and symptoms of bone marrow suppression, nephrotoxicity, and hepatotoxicity is recommended during treatment. Patients should be advised to contact their physician if they develop stomatitis, nausea, vomiting, diarrhea, rash, anorexia, jaundice, dark urine, dry cough, shortness of breath, and/or signs and symptoms of myelosuppression such as pallor, dizziness, fatigue, lethargy, fainting, easy bruising or bleeding, fever, chills, sore throat, body aches, and other influenza-like symptoms. Patients should also be counseled to avoid any other over-the-counter NSAID products.
References (16)
- Frenia ML, Long KS (1992) "Methotrexate and nonsteroidal antiinflamatory drug interactions." Ann Pharmacother, 26, p. 234-7
- Skeith KJ, Russell AS, Jamali F, Coates J, Friedman H (1990) "Lack of significant interaction between low dose methotrexate and ibuprofen or flurbiprofen in patients with arthritis." J Rheumatol, 17, p. 1008-10
- Maiche AG (1986) "Acute renal failure due to concomitant action of methotrexate and indomethacin." Lancet, 1, p. 1390
- Singh RR, Malaviya AN, Pandey JN, Guleria JS (1986) "Fatal interaction between methotrexate and naproxen." Lancet, 1, p. 1390
- Dupuis LL, Koren G, Shore A, Silverman ED, Laxer RM (1990) "Methotrexate-nonsteroidal antiinflammatory drug interaction in children with arthritis." J Rheumatol, 17, p. 1469-73
- Stewart CF, Fleming RA, Germain BF, et al. (1991) "Aspirin alters methotrexate disposition in rheumatoid arthritis patients." Arthritis Rheum, 34, p. 1514-20
- Stewart CF, Fleming RA, Arkin CR, Evans WE (1990) "Coadministration of naproxen and low-dose methotrexate in patients with rheumatoid arthritis." Clin Pharmacol Ther, 47, p. 540-6
- Liegler DG, Henderson ES, Hahn MA, Oliverio VT (1969) "The effect of organic acids on renal clearance of methotrexate in man." Clin Pharmacol Ther, 10, p. 849-57
- Ellison NM, Servi RJ (1985) "Acute renal failure and death following sequential intermediate-dose methotrexate and 5-FU: a possible adverse effect due to concomitant indomethacin administration." Cancer Treat Rep, 69, p. 342-3
- Kraus A, Alarcon-Segovia D (1991) "Low dose MTX and NSAID induced "mild" renal insufficiency and severe neutropenia." J Rheumatol, 18, p. 1274
- Dixon RL, Henderson ES, Rall DP (1965) "Plasma protein binding of methotrexate and its displacement by various drugs." Fed Proc, 24, p. 454
- Baker H (1970) "Intermittent high dose oral methotrexate therapy in psoriasis." Br J Dermatol, 82, p. 65-9
- Mandel MA (1976) "The synergistic effect of salicylates on methotrexate toxicity." Plast Reconstr Surg, 57, p. 733-7
- Taylor JR, Halprin KM (1977) "Effect of sodium salicylate and indomethacin on methotrexate-serum albumin binding." Arch Dermatol, 113, p. 588-91
- (2002) "Product Information. Methotrexate (methotrexate)." Lederle Laboratories
- Tracy TS, Krohn K, Jones DR, Bradley JD, Hall SD, Brater DC (1992) "The effects of a salicylate, ibuprofen, and naproxen on the disposition of methotrexate in patients with rheumatoid arthritis." Eur J Clin Pharmacol, 42, p. 121-5
tetracycline methotrexate
Applies to: bismuth subsalicylate / metronidazole / tetracycline and methotrexate
MONITOR: Concomitant use of tetracyclines may elevate or reduce serum methotrexate concentrations. Tetracyclines are often highly protein-bound and could displace methotrexate, resulting in higher amounts of free methotrexate and possible toxicity. Individual cases of methotrexate toxicity have been reported with doxycycline and tetracycline. In contrast, it has also been reported that oral antibiotics, such as tetracyclines, may reduce the intestinal absorption of methotrexate or interfere with its enterohepatic circulation by inhibiting bowel flora and suppressing the metabolism of methotrexate by bacteria. While the manufacturer labeling suggests this as a possibility for oral antibiotics only, it is possible for intravenous antibiotics to reach the gut and interfere with bowel flora as well. Therefore, this mechanism of interaction is also possible for intravenously administered antibiotics if they penetrate the intestine and are active against the bacteria involved. However, the clinical significance of this effect has not been established.
MANAGEMENT: If these drugs must be used together, close monitoring for evidence of serious methotrexate toxicity or reduced therapeutic efficacy is recommended. If broad-spectrum antibiotic coverage is needed during methotrexate therapy, the use of an alternate anti-infective may need to be considered.
References (11)
- (2002) "Product Information. Methotrexate (methotrexate)." Lederle Laboratories
- Tortajada-Ituren JJ, Ordovas-Baines JP, Llopis-Salvia P, Jimenez-Torres NV (1999) "High-dose methotrexate-doxycycline interaction." Ann Pharmacother, 33, p. 804-8
- Cerner Multum, Inc. "UK Summary of Product Characteristics."
- Canadian Pharmacists Association (2006) e-CPS. http://www.pharmacists.ca/function/Subscriptions/ecps.cfm?link=eCPS_quikLink
- Cerner Multum, Inc. "Australian Product Information."
- (2023) "Product Information. Methotrexate (methotrexate)." Hospira Inc
- (2022) "Product Information. Xerava (eravacycline)." PAION Deutschland GmbH
- (2021) "Product Information. Xerava (eravacycline)." Tetraphase Pharmaceuticals, Inc
- (2022) "Product Information. Methotrexate (methotrexate)." Accord Healthcare Inc
- (2023) "Product Information. Jylamvo (methotrexate)." Esteve Pharmaceuticals Ltd
- Arslan A, Zain MA, Mukhtar M, Ullah W, Roomi S (2019) "Methotrexate and doxycycline interaction: a rare cause of pancytopenia." BMJ Case Rep, 12, e229296
tetracycline bismuth subsalicylate
Applies to: bismuth subsalicylate / metronidazole / tetracycline and bismuth subsalicylate / metronidazole / tetracycline
ADJUST DOSING INTERVAL: Administration of a bismuth-containing preparation within two to three hours of a tetracycline may significantly decrease serum tetracycline concentrations. Data are available for tetracycline and doxycycline. The proposed mechanism is chelation of tetracycline by bismuth.
MANAGEMENT: Administration of a tetracycline and bismuth-containing preparation should be separated by two to three hours. Patients should be monitored for diminished tetracycline efficacy.
References (4)
- Ericsson CD, Feldman S, Pickering LK, Cleary TG (1982) "Influence of subsalicylate bismuth on absorption of doxycycline." JAMA, 247, p. 2266-7
- Albert KS, Welch RD, DeSante KA, DiSanto AR (1979) "Decreased tetracycline bioavailability caused by a bismuth subsalicylate antidiarrheal mixture." J Pharm Sci, 68, p. 586-8
- (2018) "Product Information. Seysara (sarecycline)." Allergan Inc
- (2018) "Product Information. Nuzyra (omadacycline)." Paratek Pharmaceuticals, Inc.
Drug and food interactions
metroNIDAZOLE food
Applies to: bismuth subsalicylate / metronidazole / tetracycline
CONTRAINDICATED: Use of alcohol or products containing alcohol during nitroimidazole therapy may result in a disulfiram-like reaction in some patients. There have been a few case reports involving metronidazole, although data overall are not convincing. The presumed mechanism is inhibition of aldehyde dehydrogenase (ALDH) by metronidazole in a manner similar to disulfiram. Following ingestion of alcohol, inhibition of ALDH results in increased concentrations of acetaldehyde, the accumulation of which can produce an unpleasant physiologic response referred to as the 'disulfiram reaction'. Symptoms include flushing, throbbing in head and neck, throbbing headache, respiratory difficulty, nausea, vomiting, sweating, thirst, chest pain, palpitation, dyspnea, hyperventilation, tachycardia, hypotension, syncope, weakness, vertigo, blurred vision, and confusion. Severe reactions may result in respiratory depression, cardiovascular collapse, arrhythmia, myocardial infarction, acute congestive heart failure, unconsciousness, convulsions, and death. However, some investigators have questioned the disulfiram-like properties of metronidazole. One study found neither elevations in blood acetaldehyde nor objective or subjective signs of a disulfiram-like reaction to ethanol in six subjects treated with metronidazole (200 mg three times a day for 5 days) compared to six subjects who received placebo.
MANAGEMENT: Because clear evidence is lacking concerning the safety of ethanol use during nitroimidazole therapy, patients should be apprised of the potential for interaction. Consumption of alcoholic beverages and products containing propylene glycol is specifically contraindicated during and for at least 3 days after completion of metronidazole and benznidazole therapy according to their product labeling.
References (9)
- Giannini AJ, DeFrance DT (1983) "Metronidazole and alcohol: potential for combinative abuse." J Toxicol Clin Toxicol, 20, p. 509-15
- Alexander I (1985) "Alcohol-antabuse syndrome in patients receiving metronidazole during gynaecological treatment." Br J Clin Pract, 39, p. 292-3
- Harries DP, Teale KF, Sunderland G (1990) "Metronidazole and alcohol: potential problems." Scott Med J, 35, p. 179-80
- (2001) "Product Information. Flagyl (metronidazole)." Searle
- Edwards DL, Fink PC, Van Dyke PO (1986) "Disulfiram-like reaction associated with intravenous trimethoprim-sulfamethoxazole and metronidazole." Clin Pharm, 5, p. 999-1000
- Williams CS, Woodcock KR (2000) "Do ethanol and metronidazole interact to produce a disulfiram-like reaction?." Ann Pharmacother, 34, p. 255-7
- Visapaa JP, Tillonen JS, Kaihovaara PS, Salaspuro MP (2002) "Lack of disulfiram-like reaction with metronidazole and ethanol." Ann Pharmacother, 36, p. 971-4
- Krulewitch CJ (2003) "An unexpected adverse drug effect." J Midwifery Womens Health, 48, p. 67-8
- (2017) "Product Information. Benznidazole (benznidazole)." Everett Laboratories Inc
tetracycline food
Applies to: bismuth subsalicylate / metronidazole / tetracycline
ADJUST DOSING INTERVAL: Administration with food, particularly dairy products, significantly reduces tetracycline absorption. The calcium content of these foods forms nonabsorbable chelates with tetracycline.
MANAGEMENT: Tetracycline should be administered one hour before or two hours after meals.
References (2)
- (2001) "Product Information. Achromycin (tetracycline)." Lederle Laboratories
- (2001) "Product Information. Declomycin (demeclocycline)." Lederle Laboratories
methotrexate food
Applies to: methotrexate
MONITOR: Limited data suggest that consumption of greater than 180 mg/day of caffeine may interfere with the efficacy of methotrexate (MTX) in patients with rheumatoid arthritis. The exact mechanism of interaction is unknown but may be related to the antagonistic effect of caffeine on adenosine receptors, as anti-inflammatory properties of MTX is thought to result from the accumulation of adenosine. In a study of 39 patients treated with MTX 7.5 mg/week (without folate supplementation) for 3 months, patients with high caffeine intake (more than 180 mg/day) experienced significantly less improvement in morning stiffness and joint pain from baseline than patients with low caffeine intake (less than 120 mg/day). There were no significant differences between the responses of patients with moderate caffeine intake (120 to 180 mg/day) and those of the other 2 groups. In an interview of 91 patients treated with MTX, 26% of patients who discontinued the drug were regular coffee drinkers compared to only 2% of those still receiving the drug. Because treatment failure was the reason for MTX discontinuation in 80% of patients who discontinued, the investigators suggested that caffeine may have interfered with MTX efficacy.
MANAGEMENT: Until further information is available, the potential for interaction should be considered in patients who consume substantial amounts of caffeine and caffeine-containing foods and are prescribed methotrexate for rheumatoid arthritis. It may be appropriate to limit caffeine intake if an interaction is suspected in cases of treatment failure.
References (1)
- Nesher G, Mates M, Zevin S (2003) "Effect of caffeine consumption on efficacy of methotrexate in rheumatoid arthritis." Arthritis Rheum, 48, p. 571-572
methotrexate food
Applies to: methotrexate
GENERALLY AVOID: Coadministration of methotrexate with other agents known to induce hepatotoxicity may potentiate the risk of liver injury. Methotrexate, especially at higher dosages or during prolonged treatment, has been associated with severe hepatotoxicity including acute hepatitis, chronic fibrosis, cirrhosis, and fatal liver failure.
MANAGEMENT: The risk of hepatic injury should be considered when methotrexate is used with other potentially hepatotoxic agents (e.g., acetaminophen; alcohol; androgens and anabolic steroids; antituberculous agents; azole antifungal agents; ACE inhibitors; cyclosporine (high dosages); disulfiram; endothelin receptor antagonists; interferons; ketolide and macrolide antibiotics; kinase inhibitors; minocycline; nonsteroidal anti-inflammatory agents; nucleoside reverse transcriptase inhibitors; proteasome inhibitors; retinoids; sulfonamides; tamoxifen; thiazolidinediones; tolvaptan; vincristine; zileuton; anticonvulsants such as carbamazepine, hydantoins, felbamate, and valproic acid; lipid-lowering medications such as fenofibrate, lomitapide, mipomersen, niacin, and statins; herbals and nutritional supplements such as black cohosh, chaparral, comfrey, DHEA, kava, pennyroyal oil, and red yeast rice). Baseline and periodic monitoring of hepatic function is recommended, while liver biopsy may be warranted during long-term use of methotrexate. Patients should be advised to seek medical attention if they experience potential signs and symptoms of hepatotoxicity such as fever, rash, itching, anorexia, nausea, vomiting, fatigue, right upper quadrant pain, dark urine, pale stools, and jaundice.
References (3)
- (2002) "Product Information. Methotrexate (methotrexate)." Lederle Laboratories
- Cerner Multum, Inc. "UK Summary of Product Characteristics."
- (2023) "Product Information. Methotrexate (methotrexate)." Hospira Inc
tetracycline food
Applies to: bismuth subsalicylate / metronidazole / tetracycline
GENERALLY AVOID: The bioavailability of oral tetracyclines and iron salts may be significantly decreased during concurrent administration. Therapeutic failure may result. The proposed mechanism is chelation of tetracyclines by the iron cation, forming an insoluble complex that is poorly absorbed from the gastrointestinal tract. In ten healthy volunteers, simultaneous oral administration of ferrous sulfate 200 mg and single doses of various tetracyclines (200 mg to 500 mg) resulted in reductions in the serum levels of methacycline and doxycycline by 80% to 90%, oxytetracycline by 50% to 60%, and tetracycline by 40% to 50%. In another study, 300 mg of ferrous sulfate reduced the absorption of tetracycline by 81% and that of minocycline by 77%. Conversely, the absorption of iron has been shown to be decreased by up to 78% in healthy subjects and up to 65% in patients with iron depletion when ferrous sulfate 250 mg was administered with tetracycline 500 mg. Available data suggest that administration of iron 3 hours before or 2 hours after a tetracycline largely prevents the interaction with most tetracyclines except doxycycline. Due to extensive enterohepatic cycling, iron binding may occur with doxycycline even when it is given parenterally. It has also been shown that when iron is administered up to 11 hours after doxycycline, serum concentrations of doxycycline may still be reduced by 20% to 45%.
MANAGEMENT: Coadministration of a tetracycline with any iron-containing product should be avoided if possible. Otherwise, patients should be advised to stagger the times of administration by at least three to four hours, although separating the doses may not prevent the interaction with doxycycline.
References (11)
- Neuvonen PJ (1976) "Interactions with the absorption of tetracyclines." Drugs, 11, p. 45-54
- Gothoni G, Neuvonen PJ, Mattila M, Hackman R (1972) "Iron-tetracycline interaction: effect of time interval between the drugs." Acta Med Scand, 191, p. 409-11
- Venho VM, Salonen RO, Mattila MJ (1978) "Modification of the pharmacokinetics of doxycycline in man by ferrous sulphate or charcoal." Eur J Clin Pharmacol, 14, p. 277-80
- (2002) "Product Information. Minocin (minocycline)." Lederle Laboratories
- Campbell NR, Hasinoff BB (1991) "Iron supplements: a common cause of drug interactions." Br J Clin Pharmacol, 31, p. 251-5
- Bateman FJ (1970) "Effects of tetracyclines." Br Med J, 4, p. 802
- Neuvonen PJ, Gothoni G, Hackman R, Bjorksten K (1970) "Interference of iron with the absorption of tetracyclines in man." Br Med J, 4, p. 532-4
- Greenberger NJ (1971) "Absorption of tetracyclines: interference by iron." Ann Intern Med, 74, p. 792-3
- Neuvonen PJ, Penttila O (1974) "Effect of oral ferrous sulphate on the half-life of doxycycline in man." Eur J Clin Pharmacol, 7, p. 361-3
- (2018) "Product Information. Seysara (sarecycline)." Allergan Inc
- (2018) "Product Information. Nuzyra (omadacycline)." Paratek Pharmaceuticals, Inc.
methotrexate food
Applies to: methotrexate
MONITOR: Limited data suggest that consumption of greater than 180 mg/day of caffeine may interfere with the efficacy of methotrexate (MTX) in patients with rheumatoid arthritis. The exact mechanism of interaction is unknown but may be related to the antagonistic effect of caffeine on adenosine receptors, as anti-inflammatory properties of MTX is thought to result from the accumulation of adenosine. In a study of 39 patients treated with MTX 7.5 mg/week (without folate supplementation) for 3 months, patients with high caffeine intake (more than 180 mg/day) experienced significantly less improvement in morning stiffness and joint pain from baseline than patients with low caffeine intake (less than 120 mg/day). There were no significant differences between the responses of patients with moderate caffeine intake (120 to 180 mg/day) and those of the other 2 groups. In an interview of 91 patients treated with MTX, 26% of patients who discontinued the drug were regular coffee drinkers compared to only 2% of those still receiving the drug. Because treatment failure was the reason for MTX discontinuation in 80% of patients who discontinued, the investigators suggested that caffeine may have interfered with MTX efficacy.
MANAGEMENT: Until further information is available, the potential for interaction should be considered in patients who consume substantial amounts of caffeine and caffeine-containing foods and are prescribed methotrexate for rheumatoid arthritis. It may be appropriate to limit caffeine intake if an interaction is suspected in cases of treatment failure.
References (1)
- Nesher G, Mates M, Zevin S (2003) "Effect of caffeine consumption on efficacy of methotrexate in rheumatoid arthritis." Arthritis Rheum, 48, p. 571-572
Therapeutic duplication warnings
No warnings were found for your selected drugs.
Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.
See also
Drug Interaction Classification
Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit. | |
Moderately clinically significant. Usually avoid combinations; use it only under special circumstances. | |
Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan. | |
No interaction information available. |
Further information
Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.
Check Interactions
To view an interaction report containing 4 (or more) medications, please sign in or create an account.
Save Interactions List
Sign in to your account to save this drug interaction list.