Skip to main content

Drug Interactions between Aquatab D Dose Pack and Juvisync

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Moderate

pseudoephedrine SITagliptin

Applies to: Aquatab D Dose Pack (guaifenesin / pseudoephedrine) and Juvisync (simvastatin / sitagliptin)

MONITOR: The efficacy of insulin and other antidiabetic agents may be diminished by certain drugs, including atypical antipsychotics, corticosteroids, diuretics, estrogens, gonadotropin-releasing hormone agonists, human growth hormone, phenothiazines, progestins, protease inhibitors, sympathomimetic amines, thyroid hormones, L-asparaginase, alpelisib, copanlisib, danazol, diazoxide, isoniazid, megestrol, omacetaxine, phenytoin, sirolimus, tagraxofusp, temsirolimus, as well as pharmacologic dosages of nicotinic acid and adrenocorticotropic agents. These drugs may interfere with blood glucose control because they can cause hyperglycemia, glucose intolerance, new-onset diabetes mellitus, and/or exacerbation of preexisting diabetes.

MANAGEMENT: Caution is advised when drugs that can interfere with glucose metabolism are prescribed to patients with diabetes. Close clinical monitoring of glycemic control is recommended following initiation or discontinuation of these drugs, and the dosages of concomitant antidiabetic agents adjusted as necessary. Patients should be advised to notify their physician if their blood glucose is consistently high or if they experience symptoms of severe hyperglycemia such as excessive thirst and increases in the volume or frequency of urination. Likewise, patients should be observed for hypoglycemia when these drugs are withdrawn from their therapeutic regimen.

References

  1. Greenstone MA, Shaw AB (1987) "Alternate day corticosteroid causes alternate day hyperglycaemia." Postgrad Med J, 63, p. 761-4
  2. Pollare T, Lithell H, Berne C (1989) "A comparison of the effects of hydrochlorothiazide and captopril on glucose and lipid metabolism in patients with hypertension." N Engl J Med, 321, p. 868-73
  3. Carter BL, Small RE, Mandel MD, Starkman MT (1981) "Phenytoin-induced hyperglycemia." Am J Hosp Pharm, 38, p. 1508-12
  4. Al-Rubeaan K, Ryan EA (1991) "Phenytoin-induced insulin insensitivity." Diabet Med, 8, p. 968-70
  5. Chaudhuri ML, Catania J (1988) "A comparison of the effects of bumetanide (Burinex) and frusemide on carbohydrate metabolism in the elderly." Br J Clin Pract, 42, p. 427-9
  6. Goldman JA, Neri A, Ovadia J, Eckerling B, Vries A, de (1969) "Effect of chlorothiazide on intravenous glucose tolerance in pregnancy." Am J Obstet Gynecol, 105, p. 556-60
  7. Miller NR, Moses H (1978) "Transient oculomotor nerve palsy. Association with thiazide-induced glucose intolerance." JAMA, 240, p. 1887-8
  8. Kansal PC, Buse J, Buse MG (1969) "Thiazide diuretics and control of diabetes mellitus." South Med J, 62, p. 1372-9
  9. Andersen OO, Persson I (1968) "Carbohydrate metabolism during treatment with chlorthalidone and ethacrynic acid." Br Med J, 2, p. 798-801
  10. Curtis J, Horrigan F, Ahearn D, Varney R, Sandler SG (1972) "Chlorthalidone-induced hyperosmolar hyperglycemic nonketotic coma." JAMA, 220, p. 1592-3
  11. Chowdhury FR, Bleicher SJ (1970) "Chlorthalidone--induced hypokalemia and abnormal carbohydrate metabolism." Horm Metab Res, 2, p. 13-6
  12. Diamond MT (1972) "Hyperglycemic hyperosmolar coma associated with hydrochlorothiazide and pancreatitis." N Y State J Med, 72, p. 1741-2
  13. Jones IG, Pickens PT (1967) "Diabetes mellitus following oral diuretics." Practitioner, 199, p. 209-10
  14. Black DM, Filak AT (1989) "Hyperglycemia with non-insulin-dependent diabetes following intraarticular steroid injection." J Fam Pract, 28, p. 462-3
  15. Gunnarsson R, Lundgren G, Magnusson G, Ost L, Groth CG (1980) "Steroid diabetes--a sign of overtreatment with steroids in the renal graft recipient?" Scand J Urol Nephrol Suppl, 54, p. 135-8
  16. Murphy MB, Kohner E, Lewis PJ, Schumer B, Dollery CT (1982) "Glucose intolerance in hypertensive patients treated with diuretics: a fourteen-year follow-up." Lancet, 2, p. 1293-5
  17. Seltzer HS, Allen EW (1969) "Hyperglycemia and inhibition of insulin secretion during administration of diazoxide and trichlormethiazide in man." Diabetes, 18, p. 19-28
  18. Jori A, Carrara MC (1966) "On the mechanism of the hyperglycaemic effect of chlorpromazine." J Pharm Pharmacol, 18, p. 623-4
  19. Erle G, Basso M, Federspil G, Sicolo N, Scandellari C (1977) "Effect of chlorpromazine on blood glucose and plasma insulin in man." Eur J Clin Pharmacol, 11, p. 15-8
  20. (2002) "Product Information. Thorazine (chlorpromazine)." SmithKline Beecham
  21. (2002) "Product Information. Diabinese (chlorpropamide)." Pfizer U.S. Pharmaceuticals
  22. (2002) "Product Information. Glucotrol (glipizide)." Pfizer U.S. Pharmaceuticals
  23. "Product Information. Diabeta (glyburide)." Hoechst Marion-Roussel Inc, Kansas City, MO.
  24. (2002) "Product Information. Synthroid (levothyroxine)." Abbott Pharmaceutical
  25. (2001) "Product Information. Carafate (sucralfate)." Hoechst Marion Roussel
  26. Stambaugh JE, Tucker DC (1974) "Effect of diphenylhydantoin on glucose tolerance in patients with hypoglycemia." Diabetes, 23, p. 679-83
  27. Malherbe C, Burrill KC, Levin SR, Karam JH, Forsham PH (1972) "Effect of diphenylhydantoin on insulin secretion in man." N Engl J Med, 286, p. 339-42
  28. Javier Z, Gershberg H, Hulse M (1968) "Ovulatory suppressants, estrogens, and carbohydrate metabolism." Metabolism, 17, p. 443-56
  29. Sotaniemi E, Kontturi M, Larmi T (1973) "Effect of diethylstilbestrol on blood glucose of prostatic cancer patients." Invest Urol, 10, p. 438-41
  30. Bell DS (1993) "Insulin resistance. An often unrecognized problem accompanying chronic medical disorders." Postgrad Med, 93, 99-103,
  31. Berlin I (1993) "Prazosin, diuretics, and glucose intolerance." Ann Intern Med, 119, p. 860
  32. Rowe P, Mather H (1985) "Hyperosmolar non-ketotic diabetes mellitus associated with metolazone." Br Med J, 291, p. 25-6
  33. Haiba NA, el-Habashy MA, Said SA, Darwish EA, Abdel-Sayed WS, Nayel SE (1989) "Clinical evaluation of two monthly injectable contraceptives and their effects on some metabolic parameters." Contraception, 39, p. 619-32
  34. Virutamasen P, Wongsrichanalai C, Tangkeo P, Nitichai Y, Rienprayoon D (1986) "Metabolic effects of depot-medroxyprogesterone acetate in long-term users: a cross-sectional study." Int J Gynaecol Obstet, 24, p. 291-6
  35. Dimitriadis G, Tegos C, Golfinopoulou L, Roboti C, Raptis S (1993) "Furosemide-induced hyperglycaemia - the implication of glycolytic kinases." Horm Metab Res, 25, p. 557-9
  36. Goldman JA, Ovadia JL (1969) "The effect of estrogen on intravenous glucose tolerance in woman." Am J Obstet Gynecol, 103, p. 172-8
  37. Hannaford PC, Kay CR (1989) "Oral contraceptives and diabetes mellitus." BMJ, 299, p. 1315-6
  38. Spellacy WN, Ellingson AB, Tsibris JC (1989) "The effects of two triphasic oral contraceptives on carbohydrate metabolism in women during 1 year of use." Fertil Steril, 51, p. 71-4
  39. Ludvik B, Clodi M, Kautzky-Willer A, Capek M, Hartter E, Pacini G, Prager R (1993) "Effect of dexamethasone on insulin sensitivity, islet amyloid polypeptide and insulin secretion in humans." Diabetologia, 36, p. 84-7
  40. Domenet JG (1968) "Diabetogenic effect of oral diuretics." Br Med J, 3, p. 188
  41. Coni NK, Gordon PW, Mukherjee AP, Read PR (1974) "The effect of frusemide and ethacrynic acid on carbohydrate metabolism." Age Ageing, 3, p. 85-90
  42. Schmitz O, Hermansen K, Nielsen OH, Christensen CK, Arnfred J, Hansen HE, Mogensen CE, Orskov H, Beck-Nielsen H (1986) "Insulin action in insulin-dependent diabetics after short-term thiazide therapy." Diabetes Care, 9, p. 631-6
  43. Blayac JP, Ribes G, Buys D, Puech R, Loubatieres-Mariani MM (1981) "Effects of a new benzothiadiazine derivative, LN 5330, on insulin secretion." Arch Int Pharmacodyn Ther, 253, p. 154-63
  44. Elmfeldt D, Berglund G, Wedel H, Wilhelmsen L (1983) "Incidence and importance of metabolic side-effects during antihypertensive therapy." Acta Med Scand Suppl, 672, p. 79-83
  45. Winchester JF, Kellett RJ, Boddy K, Boyle P, Dargie HJ, Mahaffey ME, Ward DM, Kennedy AC (1980) "Metolazone and bendroflumethiazide in hypertension: physiologic and metabolic observations." Clin Pharmacol Ther, 28, p. 611-8
  46. Petri M, Cumber P, Grimes L, Treby D, Bryant R, Rawlins D, Ising H (1986) "The metabolic effects of thiazide therapy in the elderly: a population study." Age Ageing, 15, p. 151-5
  47. (2001) "Product Information. Glucophage (metformin)." Bristol-Myers Squibb
  48. Harper R, Ennis CN, Heaney AP, Sheridan B, Gormley M, Atkinson AB, Johnston GD, Bell PM (1995) "A comparison of the effects of low- and conventional-dose thiazide diuretic on insulin action in hypertensive patients with NIDDM." Diabetologia, 38, p. 853-9
  49. (2001) "Product Information. Precose (acarbose)." Bayer
  50. (2001) "Product Information. Norvir (ritonavir)." Abbott Pharmaceutical
  51. (2001) "Product Information. Amaryl (glimepiride)." Hoechst Marion Roussel
  52. Charan VD, Desai N, Singh AP, Choudhry VP (1993) "Diabetes mellitus and pancreatitis as a complication of L- asparaginase therapy." Indian Pediatr, 30, p. 809-10
  53. Seifer DB, Freedman LN, Cavender JR, Baker RA (1990) "Insulin-dependent diabetes mellitus associated with danazol." Am J Obstet Gynecol, 162, p. 474-5
  54. (2001) "Product Information. Crixivan (indinavir)." Merck & Co., Inc
  55. Pickkers P, Schachter M, Hughes AD, Feher MD, Sever PS (1996) "Thiazide-induced hyperglycaemia: a role for calcium-activated potassium channels?" Diabetologia, 39, p. 861-4
  56. (2001) "Product Information. Viracept (nelfinavir)." Agouron Pharma Inc
  57. Dube MP, Johnson DL, Currier JS, Leedom JM (1997) "Protease inhibitor-associated hyperglycaemia." Lancet, 350, p. 713-4
  58. (2001) "Product Information. Oncaspar (pegaspargase)." Rhone Poulenc Rorer
  59. (2001) "Product Information. Prandin (repaglinide)." Novo Nordisk Pharmaceuticals Inc
  60. (2001) "Product Information. Elspar (asparaginase)." Merck & Co., Inc
  61. (2022) "Product Information. Hyperstat (diazoxide)." Apothecon Inc
  62. (2001) "Product Information. Megace (megestrol)." Bristol-Myers Squibb
  63. Walli R, Demant T (1998) "Impaired glucose tolerance and protease inhibitors." Ann Intern Med, 129, p. 837-8
  64. (2001) "Product Information. Agenerase (amprenavir)." Glaxo Wellcome
  65. Mauss S, Wolf E, Jaeger H (1999) "Impaired glucose tolerance in HIV-positive patients receiving and those not receiving protease inhibitors." Ann Intern Med, 130, p. 162-3
  66. Kaufman MB, Simionatto C (1999) "A review of protease inhibitor-induced hyperglycemia." Pharmacotherapy, 19, p. 114-7
  67. (2001) "Product Information. Tolinase (tolazamide)." Pharmacia and Upjohn
  68. (2001) "Product Information. Orinase (tolbutamide)." Pharmacia and Upjohn
  69. (2001) "Product Information. Dymelor (acetohexamide)." Lilly, Eli and Company
  70. Wehring H, Alexander B, Perry PJ (2000) "Diabetes mellitus associated with clozapine therapy." Pharmacotherapy, 20, p. 844-7
  71. Tsiodras S, Mantzoros C, Hammer S, Samore M (2000) "Effects of protease inhibitors on hyperglycemia, hyperlipidemia, and lipodystrophy - A 5-year cohort study." Arch Intern Med, 160, p. 2050-6
  72. (2001) "Product Information. Fortovase (saquinavir)." Roche Laboratories
  73. (2001) "Product Information. Starlix (nateglinide)." Novartis Pharmaceuticals
  74. Hardy H, Esch LD, Morse GD (2001) "Glucose disorders associated with HIV and its drug therapy." Ann Pharmacother, 35, p. 343-51
  75. Leary WP, Reyes AJ (1984) "Drug interactions with diuretics." S Afr Med J, 65, p. 455-61
  76. (2022) "Product Information. NovoLOG Mix 70/30 (insulin aspart-insulin aspart protamine)." Novo Nordisk Pharmaceuticals Inc
  77. (2003) "Product Information. Reyataz (atazanavir)." Bristol-Myers Squibb
  78. (2003) "Product Information. Lexiva (fosamprenavir)." GlaxoSmithKline
  79. (2004) "Product Information. Apidra (insulin glulisine)." Aventis Pharmaceuticals
  80. (2006) "Product Information. Prezista (darunavir)." Ortho Biotech Inc
  81. (2006) "Product Information. Zolinza (vorinostat)." Merck & Co., Inc
  82. (2007) "Product Information. Torisel (temsirolimus)." Wyeth-Ayerst Laboratories
  83. (2015) "Product Information. Rexulti (brexpiprazole)." Otsuka American Pharmaceuticals Inc
  84. (2019) "Product Information. Elzonris (tagraxofusp)." Stemline Therapeutics
  85. (2019) "Product Information. Piqray (alpelisib)." Novartis Pharmaceuticals
View all 85 references

Switch to consumer interaction data

Drug and food interactions

Major

simvastatin food

Applies to: Juvisync (simvastatin / sitagliptin)

GENERALLY AVOID: Coadministration with grapefruit juice may significantly increase the plasma concentrations of lovastatin and simvastatin and their active acid metabolites. The proposed mechanism is inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall by certain compounds present in grapefruit. When a single 60 mg dose of simvastatin was coadministered with 200 mL of double-strength grapefruit juice three times a day, simvastatin systemic exposure (AUC) increased by 16-fold and simvastatin acid AUC increased by 7-fold. Administration of a single 20 mg dose of simvastatin with 8 ounces of single-strength grapefruit juice increased the AUC of simvastatin and simvastatin acid by 1.9-fold and 1.3-fold, respectively. The interaction has also been reported with lovastatin, which has a similar metabolic profile to simvastatin. Clinically, high levels of HMG-CoA reductase inhibitory activity in plasma is associated with an increased risk of musculoskeletal toxicity. Myopathy manifested as muscle pain and/or weakness associated with grossly elevated creatine kinase exceeding ten times the upper limit of normal has been reported occasionally. Rhabdomyolysis has also occurred rarely, which may be accompanied by acute renal failure secondary to myoglobinuria and may result in death.

ADJUST DOSING INTERVAL: Fibres such as oat bran and pectin may diminish the pharmacologic effects of HMG-CoA reductase inhibitors by interfering with their absorption from the gastrointestinal tract.

Coadministration with green tea may increase the plasma concentrations of simvastatin. The mechanism of interaction has not been established, but may involve inhibition of organic anion transporting polypeptide (OATP) 1B1- and/or 2B1-mediated hepatic uptake of simvastatin by catechins in green tea. The interaction was suspected in a 61-year-old man who experienced muscle intolerance during treatment with simvastatin while drinking an average of 3 cups of green tea daily. He also experienced similar muscle intolerance (leg cramps without creatine phosphokinase elevation) during treatments with atorvastatin and rosuvastatin while drinking green tea. Pharmacokinetic studies performed during his usual green tea intake demonstrated an approximately two-fold higher exposure to simvastatin lactone (the administered form of simvastatin) than that observed after stopping green tea intake for a month. He was also able to tolerate simvastatin after discontinuing green tea consumption. The authors of the report subsequently conducted two independent studies to assess the effect of different green tea preparations on simvastatin pharmacokinetics. One study was conducted in 12 Italian subjects and the other in 12 Japanese subjects. In the Italian study, administration of a single 20 mg dose of simvastatin following pretreatment with 200 mL of a hot green tea standardized infusion 3 times daily for 14 days (estimated daily intake of 335 mg total catechins and 173 mg epigallocatechin-3-gallate (EGCG), the most abundant and biologically active catechin in green tea) was found to have no significant effect on mean peak plasma concentration (Cmax) or systemic exposure (AUC) of simvastatin lactone and simvastatin acid relative to administration with water. However, green tea increased simvastatin lactone AUC (0-6h) by about two-fold in 3 of the study subjects. In the Japanese study, administration of a single 10 mg dose of simvastatin following pretreatment with 350 mL of a commercial green tea beverage twice daily for 14 days (estimated daily intake of 638 mg total catechins and 322 mg EGCG) did not affect mean simvastatin lactone Cmax or AUC to a statistically significant extent compared to administration with water, but increased mean simvastatin acid Cmax and AUC by 42% and 22%, respectively. Similar to the first study, green tea increased simvastatin lactone AUC (0-6h) by two- to three-fold in 4 of the study subjects. Although not studied, the interaction may also occur with lovastatin due to its similar metabolic profile to simvastatin.

MANAGEMENT: Patients receiving therapy with lovastatin, simvastatin, or red yeast rice (which contains lovastatin) should be advised to avoid the consumption of grapefruit and grapefruit juice. Fluvastatin, pravastatin, pitavastatin, and rosuvastatin are metabolized by other enzymes and may be preferable alternatives in some individuals. All patients receiving statin therapy should be advised to promptly report any unexplained muscle pain, tenderness or weakness, particularly if accompanied by fever, malaise and/or dark colored urine. Therapy should be discontinued if creatine kinase is markedly elevated in the absence of strenuous exercise or if myopathy is otherwise suspected or diagnosed. Also, patients should either refrain from the use of oat bran and pectin, or separate the administration times by at least 2 to 4 hours if concurrent use cannot be avoided. Caution may be advisable when coadministered with green tea or green tea extracts. Dosing reduction of the statin and/or limiting consumption of green tea and green tea products may be required if an interaction is suspected.

References

  1. Richter WO, Jacob BG, Schwandt P (1991) "Interaction between fibre and lovastatin." Lancet, 338, p. 706
  2. (2002) "Product Information. Mevacor (lovastatin)." Merck & Co., Inc
  3. (2001) "Product Information. Zocor (simvastatin)." Merck & Co., Inc
  4. Kantola T, Kivisto KT, Neuvonen PJ (1998) "Grapefruit juice greatly increases serum concentrations of lovastatin and lovastatin acid." Clin Pharmacol Ther, 63, p. 397-402
  5. Bailey DG, Malcolm J, Arnold O, Spence JD (1998) "Grapefruit juice-drug interactions." Br J Clin Pharmacol, 46, p. 101-10
  6. Lilja JJ, Kivisto KT, Neuvonen PJ (1998) "Grapefruit juice-simvastatin interaction: Effect on serum concentrations of simvastatin, simvastatin acid, and HMG-CoA reductase inhibitors." Clin Pharmacol Ther, 64, p. 477-83
  7. Thompson PD, Clarkson P, Karas RH (2003) "Statin-associated myopathy." JAMA, 289, p. 1681-90
  8. Neuvonen PJ, Backman JT, Niemi M (2008) "Pharmacokinetic comparison of the potential over-the-counter statins simvastatin, lovastatin, fluvastatin and pravastatin." Clin Pharmacokinet, 47, p. 463-74
  9. Werba JP, Giroli M, Cavalca V, Nava MC, Tremoli E, Dal Bo L (2008) "The effect of green tea on simvastatin tolerability." Ann Intern Med, 149, p. 286-7
  10. Werba JP, Misaka S, Giroli MG, et al. (2014) "Overview of Green Tea Interaction with Cardiovascular Drugs." Curr Pharm Des
  11. Roth M, Timmermann BN, Hagenbuch B (2011) "Interactions of green tea catechins with organic anion-transporting polypeptides." Drug Metab Dispos, 39, p. 920-6
  12. Knop J, Misaka S, Singer K, et al. (2015) "Inhibitory effects of green tea and (-)-epigallocatechin gallate on transport by OATP1B1, OATP1B3, OCT1, OCT2, MATE1, MATE2-K and P-glycoprotein." PLoS One, 10, e0139370
View all 12 references

Switch to consumer interaction data

Moderate

SITagliptin food

Applies to: Juvisync (simvastatin / sitagliptin)

GENERALLY AVOID: Alcohol may cause hypoglycemia or hyperglycemia in patients with diabetes. Hypoglycemia most frequently occurs during acute consumption of alcohol. Even modest amounts can lower blood sugar significantly, especially when the alcohol is ingested on an empty stomach or following exercise. The mechanism involves inhibition of both gluconeogenesis as well as the counter-regulatory response to hypoglycemia. Episodes of hypoglycemia may last for 8 to 12 hours after ethanol ingestion. By contrast, chronic alcohol abuse can cause impaired glucose tolerance and hyperglycemia. Moderate alcohol consumption generally does not affect blood glucose levels in patients with well controlled diabetes. A disulfiram-like reaction (e.g., flushing, headache, and nausea) to alcohol has been reported frequently with the use of chlorpropamide and very rarely with other sulfonylureas.

MANAGEMENT: Patients with diabetes should avoid consuming alcohol if their blood glucose is not well controlled, or if they have hypertriglyceridemia, neuropathy, or pancreatitis. Patients with well controlled diabetes should limit their alcohol intake to one drink daily for women and two drinks daily for men (1 drink = 5 oz wine, 12 oz beer, or 1.5 oz distilled spirits) in conjunction with their normal meal plan. Alcohol should not be consumed on an empty stomach or following exercise.

References

  1. Jerntorp P, Almer LO (1981) "Chlorpropamide-alcohol flushing in relation to macroangiopathy and peripheral neuropathy in non-insulin dependent diabetes." Acta Med Scand, 656, p. 33-6
  2. Jerntorp P, Almer LO, Holin H, et al. (1983) "Plasma chlorpropamide: a critical factor in chlorpropamide-alcohol flush." Eur J Clin Pharmacol, 24, p. 237-42
  3. Barnett AH, Spiliopoulos AJ, Pyke DA, et al. (1983) "Metabolic studies in chlorpropamide-alcohol flush positive and negative type 2 (non-insulin dependent) diabetic patients with and without retinopathy." Diabetologia, 24, p. 213-5
  4. Hartling SG, Faber OK, Wegmann ML, Wahlin-Boll E, Melander A (1987) "Interaction of ethanol and glipizide in humans." Diabetes Care, 10, p. 683-6
  5. (2002) "Product Information. Diabinese (chlorpropamide)." Pfizer U.S. Pharmaceuticals
  6. (2002) "Product Information. Glucotrol (glipizide)." Pfizer U.S. Pharmaceuticals
  7. "Product Information. Diabeta (glyburide)." Hoechst Marion-Roussel Inc, Kansas City, MO.
  8. Skillman TG, Feldman JM (1981) "The pharmacology of sulfonylureas." Am J Med, 70, p. 361-72
  9. (2002) "Position Statement: evidence-based nutrition principles and recommendations for the treatment and prevention of diabetes related complications. American Diabetes Association." Diabetes Care, 25(Suppl 1), S50-S60
  10. Cerner Multum, Inc. "UK Summary of Product Characteristics."
View all 10 references

Switch to consumer interaction data

Moderate

simvastatin food

Applies to: Juvisync (simvastatin / sitagliptin)

MONITOR: Concomitant use of statin medication with substantial quantities of alcohol may increase the risk of hepatic injury. Transient increases in serum transaminases have been reported with statin use and while these increases generally resolve or improve with continued therapy or a brief interruption in therapy, there have been rare postmarketing reports of fatal and non-fatal hepatic failure in patients taking statins. Patients who consume substantial quantities of alcohol and/or have a history of liver disease may be at increased risk for hepatic injury. Active liver disease or unexplained transaminase elevations are contraindications to statin use.

MANAGEMENT: Patients should be counseled to avoid substantial quantities of alcohol in combination with statin medications and clinicians should be aware of the increased risk for hepatotoxicity in these patients.

References

  1. (2001) "Product Information. Pravachol (pravastatin)." Bristol-Myers Squibb
  2. (2001) "Product Information. Zocor (simvastatin)." Merck & Co., Inc
  3. (2001) "Product Information. Lescol (fluvastatin)." Novartis Pharmaceuticals
  4. (2001) "Product Information. Lipitor (atorvastatin)." Parke-Davis
  5. (2002) "Product Information. Altocor (lovastatin)." Andrx Pharmaceuticals
  6. (2003) "Product Information. Crestor (rosuvastatin)." AstraZeneca Pharma Inc
  7. Cerner Multum, Inc. "UK Summary of Product Characteristics."
  8. Cerner Multum, Inc. "Australian Product Information."
  9. (2010) "Product Information. Livalo (pitavastatin)." Kowa Pharmaceuticals America (formerly ProEthic)
View all 9 references

Switch to consumer interaction data

Moderate

pseudoephedrine food

Applies to: Aquatab D Dose Pack (guaifenesin / pseudoephedrine)

MONITOR: Coadministration of two or more sympathomimetic agents may increase the risk of adverse effects such as nervousness, irritability, and increased heart rate. Central nervous system (CNS) stimulants, particularly amphetamines, can potentiate the adrenergic response to vasopressors and other sympathomimetic agents. Additive increases in blood pressure and heart rate may occur due to enhanced peripheral sympathetic activity.

MANAGEMENT: Caution is advised if two or more sympathomimetic agents are coadministered. Pulse and blood pressure should be closely monitored.

References

  1. Rosenblatt JE, Lake CR, van Kammen DP, Ziegler MG, Bunney WE Jr (1979) "Interactions of amphetamine, pimozide, and lithium on plasma norepineophrine and dopamine-beta-hydroxylase in schizophrenic patients." Psychiatry Res, 1, p. 45-52
  2. Cavanaugh JH, Griffith JD, Oates JA (1970) "Effect of amphetamine on the pressor response to tyramine: formation of p-hydroxynorephedrine from amphetamine in man." Clin Pharmacol Ther, 11, p. 656
  3. (2001) "Product Information. Adderall (amphetamine-dextroamphetamine)." Shire Richwood Pharmaceutical Company Inc
  4. (2001) "Product Information. Tenuate (diethylpropion)." Aventis Pharmaceuticals
  5. (2001) "Product Information. Sanorex (mazindol)." Novartis Pharmaceuticals
  6. (2001) "Product Information. Focalin (dexmethylphenidate)." Mikart Inc
  7. (2002) "Product Information. Strattera (atomoxetine)." Lilly, Eli and Company
View all 7 references

Switch to consumer interaction data

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Loading...
QR code containing a link to this page

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.