Skip to main content

Drug Interactions between amyl nitrite/sodium nitrite/sodium thiosulfate and phenytoin

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Major

phenytoin sodium nitrite

Applies to: phenytoin and amyl nitrite/sodium nitrite/sodium thiosulfate

MONITOR CLOSELY: Sodium nitrite can cause methemoglobin formation, which diminishes oxygen-carrying capacity of the blood. Coadministration with other agents that are also associated with methemoglobinemia including local anesthetics (e.g., benzocaine, lidocaine, prilocaine), antimalarials (e.g., chloroquine, primaquine, quinine, tafenoquine), nitrates and nitrites, sulfonamides, aminosalicylic acid, dapsone, dimethyl sulfoxide, flutamide, metoclopramide (primarily in infants), nitrofurantoin (primarily in infants), phenazopyridine, phenobarbital, phenytoin, and rasburicase may increase the risk. Additional risk factors include very young age, anemia, cardiac/pulmonary disease, peripheral vascular disease, shock, sepsis, acidosis, and genetic predisposition (e.g., NADH cytochrome-b5 reductase deficiency; glucose-6-phosphate dehydrogenase deficiency; hemoglobin M). When sodium nitrite is administered to humans, a wide range of methemoglobin concentrations may occur. Methemoglobin concentrations as high as 58% have been reported after administration of two 300 mg doses to an adult. There have been reports of methemoglobinemia, coma, and death in patients without life-threatening cyanide poisoning but who were treated with injection of sodium nitrite at dosages less than twice those recommended for the treatment of cyanide poisoning.

MANAGEMENT: Sodium nitrite should be used with caution in the presence of other methemoglobin-inducing drugs. Patients should be closely monitored to ensure adequate perfusion and oxygenation during treatment with sodium nitrite. Methemoglobin levels should be monitored and oxygen administered whenever possible. Signs and symptoms of methemoglobinemia may be delayed some hours after drug exposure. Patients or their caregivers should be advised to seek medical attention if they notice signs and symptoms of methemoglobinemia such as slate-grey cyanosis in buccal mucous membranes, lips, and nail beds; nausea; headache; dizziness; lightheadedness; lethargy; fatigue; dyspnea; tachypnea; tachycardia; anxiety; and confusion. In severe cases, patients may progress to central nervous system depression, stupor, seizures, acidosis, cardiac arrhythmias, syncope, and shock. Methemoglobinemia should be considered if central cyanosis is unresponsive to oxygen. Calculated oxygen saturation and pulse oximetry are generally not accurate in the setting of methemoglobinemia. The diagnosis can be confirmed by an elevated methemoglobin level of at least 10%. If patient does not respond to administration of oxygen, clinically significant methemoglobinemia should be treated with methylene blue 1 to 2 mg/kg by slow intravenous injection over 5 minutes.

References

  1. Coleman MD, Coleman NA (1996) "Drug-induced methaemoglobinaemia: treatment issues." Drug Saf, 14, p. 394-405
  2. (2012) "Product Information. Sodium Nitrite (sodium nitrite)." Hope Pharmaceuticals
  3. Rehman HU (2001) "Methemoglobinemia." West J Med, 175, p. 193-6

Switch to consumer interaction data

Major

amyl nitrite sodium nitrite

Applies to: amyl nitrite/sodium nitrite/sodium thiosulfate and amyl nitrite/sodium nitrite/sodium thiosulfate

MONITOR CLOSELY: Sodium nitrite can cause methemoglobin formation, which diminishes oxygen-carrying capacity of the blood. Coadministration with other agents that are also associated with methemoglobinemia including local anesthetics (e.g., benzocaine, lidocaine, prilocaine), antimalarials (e.g., chloroquine, primaquine, quinine, tafenoquine), nitrates and nitrites, sulfonamides, aminosalicylic acid, dapsone, dimethyl sulfoxide, flutamide, metoclopramide (primarily in infants), nitrofurantoin (primarily in infants), phenazopyridine, phenobarbital, phenytoin, and rasburicase may increase the risk. Additional risk factors include very young age, anemia, cardiac/pulmonary disease, peripheral vascular disease, shock, sepsis, acidosis, and genetic predisposition (e.g., NADH cytochrome-b5 reductase deficiency; glucose-6-phosphate dehydrogenase deficiency; hemoglobin M). When sodium nitrite is administered to humans, a wide range of methemoglobin concentrations may occur. Methemoglobin concentrations as high as 58% have been reported after administration of two 300 mg doses to an adult. There have been reports of methemoglobinemia, coma, and death in patients without life-threatening cyanide poisoning but who were treated with injection of sodium nitrite at dosages less than twice those recommended for the treatment of cyanide poisoning.

MANAGEMENT: Sodium nitrite should be used with caution in the presence of other methemoglobin-inducing drugs. Patients should be closely monitored to ensure adequate perfusion and oxygenation during treatment with sodium nitrite. Methemoglobin levels should be monitored and oxygen administered whenever possible. Signs and symptoms of methemoglobinemia may be delayed some hours after drug exposure. Patients or their caregivers should be advised to seek medical attention if they notice signs and symptoms of methemoglobinemia such as slate-grey cyanosis in buccal mucous membranes, lips, and nail beds; nausea; headache; dizziness; lightheadedness; lethargy; fatigue; dyspnea; tachypnea; tachycardia; anxiety; and confusion. In severe cases, patients may progress to central nervous system depression, stupor, seizures, acidosis, cardiac arrhythmias, syncope, and shock. Methemoglobinemia should be considered if central cyanosis is unresponsive to oxygen. Calculated oxygen saturation and pulse oximetry are generally not accurate in the setting of methemoglobinemia. The diagnosis can be confirmed by an elevated methemoglobin level of at least 10%. If patient does not respond to administration of oxygen, clinically significant methemoglobinemia should be treated with methylene blue 1 to 2 mg/kg by slow intravenous injection over 5 minutes.

References

  1. Coleman MD, Coleman NA (1996) "Drug-induced methaemoglobinaemia: treatment issues." Drug Saf, 14, p. 394-405
  2. (2012) "Product Information. Sodium Nitrite (sodium nitrite)." Hope Pharmaceuticals
  3. Rehman HU (2001) "Methemoglobinemia." West J Med, 175, p. 193-6

Switch to consumer interaction data

Drug and food interactions

Moderate

phenytoin food

Applies to: phenytoin

ADJUST DOSING INTERVAL: Phenytoin bioavailability may decrease to subtherapeutic levels when the suspension is given concomitantly with enteral feedings. The mechanism may be related to phenytoin binding to substances in the enteral formula (e.g., calcium, protein) and/or binding to the tube lumen. Data have been conflicting and some studies have reported no changes in phenytoin levels, while others have reported significant reductions.

MONITOR: Acute consumption of alcohol may increase plasma phenytoin levels. Chronic consumption of alcohol may decrease plasma phenytoin levels. The mechanism of this interaction is related to induction of phenytoin metabolism by ethanol during chronic administration. Other hydantoin derivatives may be similarly affected by ethanol.

MANAGEMENT: Some experts have recommended interrupting the feeding for 2 hours before and after the phenytoin dose, giving the phenytoin suspension diluted in water, and flushing the tube with water after administration; however, this method may not entirely avoid the interaction and is not always clinically feasible. Patients should be closely monitored for clinical and laboratory evidence of altered phenytoin efficacy and levels upon initiation and discontinuation of enteral feedings. Dosage adjustments or intravenous administration may be required until therapeutic serum levels are obtained. In addition, patients receiving phenytoin therapy should be warned about the interaction between phenytoin and ethanol and they should be advised to notify their physician if they experience worsening of seizure control or symptoms of toxicity, including drowsiness, visual disturbances, change in mental status, nausea, or ataxia.

References

  1. Sandor P, Sellers EM, Dumbrell M, Khouw V (1981) "Effect of short- and long-term alcohol use on phenytoin kinetics in chronic alcoholics." Clin Pharmacol Ther, 30, p. 390-7
  2. Holtz L, Milton J, Sturek JK (1987) "Compatibility of medications with enteral feedings." JPEN J Parenter Enteral Nutr, 11, p. 183-6
  3. Sellers EM, Holloway MR (1978) "Drug kinetics and alcohol ingestion." Clin Pharmacokinet, 3, p. 440-52
  4. (2001) "Product Information. Dilantin (phenytoin)." Parke-Davis
  5. Doak KK, Haas CE, Dunnigan KJ, et al. (1998) "Bioavailability of phenytoin acid and phenytoin sodium with enteral feedings." Pharmacotherapy, 18, p. 637-45
  6. Rodman DP, Stevenson TL, Ray TR (1995) "Phenytoin malabsorption after jejunostomy tube delivery." Pharmacotherapy, 15, p. 801-5
  7. Au Yeung SC, Ensom MH (2000) "Phenytoin and enteral feedings: does evidence support an interaction?" Ann Pharmacother, 34, p. 896-905
  8. Ozuna J, Friel P (1984) "Effect of enteral tube feeding on serum phenytoin levels." J Neurosurg Nurs, 16, p. 289-91
  9. Faraji B, Yu PP (1998) "Serum phenytoin levels of patients on gastrostomy tube feeding." J Neurosci Nurs, 30, p. 55-9
  10. Marvel ME, Bertino JS (1991) "Comparative effects of an elemental and a complex enteral feeding formulation on the absorption of phenytoin suspension." JPEN J Parenter Enteral Nutr, 15, p. 316-8
  11. Fleisher D, Sheth N, Kou JH (1990) "Phenytoin interaction with enteral feedings administered through nasogastric tubes." JPEN J Parenter Enteral Nutr, 14, p. 513-6
  12. Haley CJ, Nelson J (1989) "Phenytoin-enteral feeding interaction." DICP, 23, p. 796-8
  13. Guidry JR, Eastwood TF, Curry SC (1989) "Phenytoin absorption in volunteers receiving selected enteral feedings." West J Med, 150, p. 659-61
  14. Krueger KA, Garnett WR, Comstock TJ, Fitzsimmons WE, Karnes HT, Pellock JM (1987) "Effect of two administration schedules of an enteral nutrient formula on phenytoin bioavailability." Epilepsia, 28, p. 706-12
  15. Cerner Multum, Inc. "UK Summary of Product Characteristics."
  16. Cerner Multum, Inc. "Australian Product Information."
View all 16 references

Switch to consumer interaction data

Moderate

amyl nitrite food

Applies to: amyl nitrite/sodium nitrite/sodium thiosulfate

MONITOR: Many psychotherapeutic and CNS-active agents (e.g., anxiolytics, sedatives, hypnotics, antidepressants, antipsychotics, opioids, alcohol, muscle relaxants) exhibit hypotensive effects, especially during initiation of therapy and dose escalation. Coadministration with antihypertensives and other hypotensive agents, in particular vasodilators and alpha-blockers, may result in additive effects on blood pressure and orthostasis.

MANAGEMENT: Caution and close monitoring for development of hypotension is advised during coadministration of these agents. Some authorities recommend avoiding alcohol in patients receiving vasodilating antihypertensive drugs. Patients should be advised to avoid rising abruptly from a sitting or recumbent position and to notify their physician if they experience dizziness, lightheadedness, syncope, orthostasis, or tachycardia.

References

  1. Sternbach H (1991) "Fluoxetine-associated potentiation of calcium-channel blockers." J Clin Psychopharmacol, 11, p. 390-1
  2. Shook TL, Kirshenbaum JM, Hundley RF, Shorey JM, Lamas GA (1984) "Ethanol intoxication complicating intravenous nitroglycerin therapy." Ann Intern Med, 101, p. 498-9
  3. Feder R (1991) "Bradycardia and syncope induced by fluoxetine." J Clin Psychiatry, 52, p. 139
  4. Ellison JM, Milofsky JE, Ely E (1990) "Fluoxetine-induced bradycardia and syncope in two patients." J Clin Psychiatry, 51, p. 385-6
  5. Rodriguez de la Torre B, Dreher J, Malevany I, et al. (2001) "Serum levels and cardiovascular effects of tricyclic antidepressants and selective serotonin reuptake inhibitors in depressed patients." Ther Drug Monit, 23, p. 435-40
  6. Cerner Multum, Inc. "Australian Product Information."
  7. Pacher P, Kecskemeti V (2004) "Cardiovascular side effects of new antidepressants and antipsychotics: new drugs, old concerns?" Curr Pharm Des, 10, p. 2463-75
  8. Andrews C, Pinner G (1998) "Postural hypotension induced by paroxetine." BMJ, 316, p. 595
View all 8 references

Switch to consumer interaction data

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Loading...
QR code containing a link to this page

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.