Skip to main content

Drug Interactions between amoxicillin / clarithromycin / lansoprazole and Aubagio

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Major

clarithromycin teriflunomide

Applies to: amoxicillin / clarithromycin / lansoprazole and Aubagio (teriflunomide)

MONITOR CLOSELY: The recent, concomitant, or subsequent use (without the recommended leflunomide washout period or procedure) of other agents known to induce hepatotoxicity may potentiate the risk of liver injury associated with leflunomide. The risk is thought to extend to teriflunomide, its principal active metabolite, because recommended dosages of both result in a similar range of plasma concentrations of teriflunomide. Elevated liver transaminases, hepatitis, jaundice/cholestasis, hepatic failure, and acute hepatic necrosis have been reported with the use of leflunomide. Liver enzyme elevations were generally mild (2 times the upper limit of normal or less) and resolved while continuing treatment. Marked elevations (greater than 3-fold ULN) occurred infrequently and reversed with dose reduction or discontinuation of treatment in most cases. However, fatalities associated with severe liver injury have also been reported rarely. A 2009 review of leflunomide adverse event reports by the FDA identified 49 cases of severe liver injury, including 14 cases of fatal liver failure, between August 2002 and May 2009. An additional five patients required a liver transplant and nine patients experienced a life-threatening event. In this review, concomitant use of other hepatotoxic drugs and preexisting liver disease were associated with the greatest risk for liver injury during leflunomide treatment. Specifically, 46 of the 49 patients were also taking other medications that have been associated with liver injury including methotrexate, TNF-alfa blockers, hydroxychloroquine, acetaminophen, nonsteroidal anti-inflammatory drugs and statins, and 14 patients had preexisting liver disease such as active or chronic hepatitis and/or a history of alcohol abuse. The estimated duration of leflunomide exposure before onset of severe liver injury ranged from 9 days to 6 years, with the majority occurring within the first 6 to 12 months of treatment.

MANAGEMENT: Caution is advised if leflunomide or teriflunomide must be used in patients who are currently receiving or have recently received treatment with other hepatotoxic agents (e.g., acetaminophen; alcohol; androgens and anabolic steroids; antituberculous agents; azole antifungal agents; ACE inhibitors; cyclosporine (high dosages); disulfiram; endothelin receptor antagonists; interferons; ketolide and macrolide antibiotics; kinase inhibitors; minocycline; nonsteroidal anti-inflammatory agents; nucleoside reverse transcriptase inhibitors; proteasome inhibitors; retinoids; thiazolidinediones; tolvaptan; vincristine; zileuton; anticonvulsants such as carbamazepine, hydantoins, felbamate, and valproic acid; lipid-lowering medications such as fenofibrate, lomitapide, mipomersen, niacin, and statins; herbals and nutritional supplements such as black cohosh, chaparral, comfrey, DHEA, kava, pennyroyal oil, and red yeast rice), and vice versa. Liver enzymes and bilirubin should be measured prior to initiation of leflunomide/teriflunomide therapy and at least monthly for the first six months of treatment and every 6 to 8 weeks thereafter. Patients with preexisting liver disease or elevated baseline liver enzymes (i.e., ALT greater than two times ULN) should not receive leflunomide or teriflunomide. Patients who develop elevated serum ALT greater than three times ULN while receiving these medications should discontinue treatment and be given washout procedures with cholestyramine or activated charcoal to accelerate elimination of leflunomide's active metabolite from plasma, which otherwise may take up to two years. Follow-up monitoring should be conducted at least weekly until the ALT value is within normal range, and washout procedures repeated as necessary. All patients treated with leflunomide or teriflunomide should be advised to seek medical attention if they experience potential signs and symptoms of hepatotoxicity such as fever, rash, itching, anorexia, nausea, vomiting, fatigue, malaise, right upper quadrant pain, dark urine, pale stools, and jaundice.

References

  1. "Product Information. Arava (leflunomide)." Hoechst Marion Roussel PROD (2001):
  2. EMEA "EMEA public statement on leflunomide (ARAVA) - severe and serious hepatic reactions. Available from URL: http://www.eudra.org/emea.html" (2001):
  3. Canadian Pharmacists Association "e-CPS. http://www.pharmacists.ca/function/Subscriptions/ecps.cfm?link=eCPS_quikLink" (2006):

Switch to consumer interaction data

Moderate

clarithromycin lansoprazole

Applies to: amoxicillin / clarithromycin / lansoprazole and amoxicillin / clarithromycin / lansoprazole

MONITOR: Coadministration with clarithromycin may increase the plasma concentrations of lansoprazole. The proposed mechanism is clarithromycin inhibition of intestinal (first-pass) and hepatic metabolism of lansoprazole via CYP450 3A4. Although lansoprazole is primarily metabolized by CYP450 2C19 in the liver, 3A4-mediated metabolism is the predominant pathway in individuals who are 2C19-deficient (approximately 3% to 5% of the Caucasian and 17% to 20% of the Asian population). Additionally, inhibition of P-glycoprotein intestinal efflux transporter by clarithromycin may also contribute to the interaction, resulting in increased bioavailability of lansoprazole. In 18 healthy volunteers--six each of homozygous extensive metabolizers (EMs), heterozygous EMs, and poor metabolizers (PMs) of CYP450 2C19--clarithromycin (400 mg orally twice a day for 6 days) increased the peak plasma concentration (Cmax) of a single 60 mg oral dose of lansoprazole by 1.47, 1.71- and 1.52-fold, respectively, and area under the concentration-time curve (AUC) by 1.55-, 1.74- and 1.80-fold, respectively, in each of these groups compared to placebo. The AUC ratio of lansoprazole to lansoprazole sulphone, which is considered an index of CYP450 3A4 activity, was significantly increased by clarithromycin in all three groups. However, elimination half-life of lansoprazole was prolonged by 1.54-fold only in PMs. Mild diarrhea was reported in two subjects and mild abdominal disturbance in six subjects during clarithromycin coadministration. These side effects continued until day 6 and ameliorated the day after discontinuation of clarithromycin, whereas no adverse events were reported during placebo administration or after lansoprazole plus placebo. In another study, clarithromycin induced dose-dependent increases in the plasma concentration of lansoprazole in a group of 20 patients receiving treatment for H. pylori eradication. Mean 3-hour plasma lansoprazole concentration was 385 ng/mL for the control subjects who received lansoprazole 30 mg and amoxicillin 750 mg twice a day for 7 days; 696 ng/mL for patients coadministered clarithromycin 200 mg twice a day; and 947 ng/mL for patients coadministered clarithromycin 400 mg twice a day.

MANAGEMENT: Although lansoprazole is generally well tolerated, caution may be advised during coadministration with clarithromycin, particularly if higher dosages of one or both drugs are used. Dosage adjustment may be necessary in patients who experience excessive adverse effects of lansoprazole.

References

  1. Ushiama H, Echizen H, Nachi S, Ohnishi A "Dose-dependent inhibition of CYP3A activity by clarithromycin during Helicobacter pylori eradication therapy assessed by changes in plasma lansoprazole levels and partial cortisol clearance to 6beta-hydroxycortisol." Clin Pharmacol Ther 72 (2002): 33-43
  2. Saito M, Yasui-Furukori N, Uno T, et al. "Effects of clarithromycin on lansoprazole pharmacokinetics between CYP2C19 genotypes." Br J Clin Pharmacol 59 (2005): 302-9
  3. Miura M, Tada H, Yasui-Furukori N, et al. "Effect of clarithromycin on the enantioselective disposition of lansoprazole in relation to CYP2C19 genotypes." Chirality 17 (2005): 338-344

Switch to consumer interaction data

Minor

amoxicillin clarithromycin

Applies to: amoxicillin / clarithromycin / lansoprazole and amoxicillin / clarithromycin / lansoprazole

Although some in vitro data indicate synergism between macrolide antibiotics and penicillins, other in vitro data indicate antagonism. When these drugs are given together, neither has predictable therapeutic efficacy. Data are available for erythromycin, although theoretically this interaction could occur with any macrolide. Except for monitoring of the effectiveness of antibiotic therapy, no special precautions appear to be necessary.

References

  1. Strom J "Penicillin and erythromycin singly and in combination in scarlatina therapy and the interference between them." Antibiot Chemother 11 (1961): 694-7
  2. Cohn JR, Jungkind DL, Baker JS "In vitro antagonism by erythromycin of the bactericidal action of antimicrobial agents against common respiratory pathogens." Antimicrob Agents Chemother 18 (1980): 872-6
  3. Penn RL, Ward TT, Steigbigel RT "Effects of erythromycin in combination with penicillin, ampicillin, or gentamicin on the growth of listeria monocytogenes." Antimicrob Agents Chemother 22 (1982): 289-94

Switch to consumer interaction data

Drug and food interactions

Minor

clarithromycin food

Applies to: amoxicillin / clarithromycin / lansoprazole

Grapefruit juice may delay the gastrointestinal absorption of clarithromycin but does not appear to affect the overall extent of absorption or inhibit the metabolism of clarithromycin. The mechanism of interaction is unknown but may be related to competition for intestinal CYP450 3A4 and/or absorptive sites. In an open-label, randomized, crossover study consisting of 12 healthy subjects, coadministration with grapefruit juice increased the time to reach peak plasma concentration (Tmax) of both clarithromycin and 14-hydroxyclarithromycin (the active metabolite) by 80% and 104%, respectively, compared to water. Other pharmacokinetic parameters were not significantly altered. This interaction is unlikely to be of clinical significance.

References

  1. Cheng KL, Nafziger AN, Peloquin CA, Amsden GW "Effect of grapefruit juice on clarithromycin pharmacokinetics." Antimicrob Agents Chemother 42 (1998): 927-9

Switch to consumer interaction data

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Loading...
QR code containing a link to this page

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.