Skip to main content

Drug Interactions between Amlobenz and Scot-Tussin Original (old formulation)

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Moderate

phenylephrine caffeine

Applies to: Scot-Tussin Original (old formulation) (caffeine / pheniramine / phenylephrine / sodium citrate / sodium salicylate) and Scot-Tussin Original (old formulation) (caffeine / pheniramine / phenylephrine / sodium citrate / sodium salicylate)

MONITOR: Coadministration of two or more sympathomimetic agents may increase the risk of adverse effects such as nervousness, irritability, and increased heart rate. Central nervous system (CNS) stimulants, particularly amphetamines, can potentiate the adrenergic response to vasopressors and other sympathomimetic agents. Additive increases in blood pressure and heart rate may occur due to enhanced peripheral sympathetic activity.

MANAGEMENT: Caution is advised if two or more sympathomimetic agents are coadministered. Pulse and blood pressure should be closely monitored.

References

  1. Rosenblatt JE, Lake CR, van Kammen DP, Ziegler MG, Bunney WE Jr "Interactions of amphetamine, pimozide, and lithium on plasma norepineophrine and dopamine-beta-hydroxylase in schizophrenic patients." Psychiatry Res 1 (1979): 45-52
  2. Cavanaugh JH, Griffith JD, Oates JA "Effect of amphetamine on the pressor response to tyramine: formation of p-hydroxynorephedrine from amphetamine in man." Clin Pharmacol Ther 11 (1970): 656
  3. "Product Information. Adderall (amphetamine-dextroamphetamine)." Shire Richwood Pharmaceutical Company Inc PROD (2001):
  4. "Product Information. Tenuate (diethylpropion)." Aventis Pharmaceuticals PROD (2001):
  5. "Product Information. Sanorex (mazindol)." Novartis Pharmaceuticals PROD (2001):
  6. "Product Information. Focalin (dexmethylphenidate)." Mikart Inc (2001):
  7. "Product Information. Strattera (atomoxetine)." Lilly, Eli and Company (2002):
View all 7 references

Switch to consumer interaction data

Moderate

amLODIPine sodium salicylate

Applies to: Amlobenz (amlodipine / benazepril) and Scot-Tussin Original (old formulation) (caffeine / pheniramine / phenylephrine / sodium citrate / sodium salicylate)

MONITOR: Limited data indicate that some cyclooxygenase inhibitors may attenuate the antihypertensive effects of some calcium channel blockers. The mechanism appears to be related to an alteration of vascular tone, which is dependent on prostacyclins and other vasodilatory prostanoids. When a nonsteroidal anti-inflammatory drug (NSAID) is added to the regimen of a patient who is already taking a calcium channel blocker, increased blood pressure may result. Also, the clinician should be aware that the risk of hypotension is increased when NSAIDs are withdrawn from the regimen.

MANAGEMENT: Monitoring for altered blood pressure control is recommended.

References

  1. Ring ME, Corrigan JJ, Fenster PE "Effects of oral diltiazem on platelet function: alone and in combination with "low dose" aspirin." Thromb Res 44 (1986): 391-400
  2. Altman R, Scazziota A, Dujovne C "Diltiazem potentiates the inhibitory effect of aspirin on platelet aggregation." Clin Pharmacol Ther 44 (1988): 320-5
  3. Cremer KF, Pieper JA, Joyal M, Mehta J "Effects of diltiazem, dipyridamole, and their combination on hemostasis." Clin Pharmacol Ther 36 (1984): 641-4
  4. Minuz P, Pancera P, Ribul M, et al. "Amlodipine and haemodynamic effects of cyclo-oxygenase inhibition." Br J Clin Pharmacol 39 (1995): 45-50
  5. Houston MC, Weir M, Gray J, et al. "The effects of nonsteroidal anti-inflammatory drugs on blood pressures of patients with hypertension controlled by verapamil." Arch Intern Med 155 (1995): 1049-54
  6. Deleeuw PW "Nonsteroidal anti-inflammatory drugs and hypertension: the risks in perspective." Drugs 51 (1996): 179-87
  7. "Product Information. DurAct (bromfenac)." Wyeth-Ayerst Laboratories PROD
  8. "Product Information. Arthrotec (diclofenac-misoprostol)." Searle PROD (2001):
  9. Zanchetti A, Hansson L, Leonetti G, et al. "Low-dose aspirin does not interfere with the blood pressure-lowering effects of antihypertensive therapy." J Hypertens 20 (2002): 1015-1022
View all 9 references

Switch to consumer interaction data

Moderate

benazepril sodium salicylate

Applies to: Amlobenz (amlodipine / benazepril) and Scot-Tussin Original (old formulation) (caffeine / pheniramine / phenylephrine / sodium citrate / sodium salicylate)

MONITOR: Nonsteroidal anti-inflammatory drugs (NSAIDs) may attenuate the antihypertensive effects of ACE inhibitors. The proposed mechanism is NSAID-induced inhibition of renal prostaglandin synthesis, which results in unopposed pressor activity producing hypertension. In addition, NSAIDs can cause fluid retention, which also affects blood pressure. Some NSAIDs may also alter the pharmacokinetics of certain ACE inhibitors. For example, oxaprozin has been shown to reduce the systemic exposure (AUC) of enalapril and its active metabolite, enalaprilat.

MONITOR: Concomitant use of NSAIDs and ACE inhibitors may cause deterioration in renal function, particularly in patients who are elderly or volume-depleted (including those on diuretic therapy) or have compromised renal function. Acute renal failure may occur, although effects are usually reversible. Chronic use of NSAIDs alone may be associated with renal toxicities, including elevations in serum creatinine and BUN, tubular necrosis, glomerulitis, renal papillary necrosis, acute interstitial nephritis, nephrotic syndrome, and renal failure. Additionally, in patients with prerenal conditions whose renal perfusion may be dependent on the function of prostaglandins, NSAIDs may precipitate overt renal decompensation via a dose-related inhibition of prostaglandin synthesis. ACE inhibitors can further worsen renal function by blocking the effect of angiotensin II-mediated efferent arteriolar vasoconstriction, thereby decreasing glomerular filtration.

MANAGEMENT: Patients receiving ACE inhibitors who require prolonged (greater than 1 week) concomitant therapy with an NSAID should have blood pressure monitored more closely following initiation, discontinuation, or change of dosage of the NSAID. Renal function should also be evaluated periodically during prolonged coadministration. The interaction is not expected to occur with low doses (e.g., low-dose aspirin) or intermittent short-term administration of NSAIDs.

References

  1. Moore TJ, Crantz FR, Hollenberg NK "Contribution of prostaglandins to the antihypertensive action of captopril in essential hypertension." Hypertension 3 (1981): 168-73
  2. Radack KL, Deck CC, Bloomfield SS "Ibuprofen interferes with the efficacy of antihypertensive drugs: a randomized, double-blind, placebo-controlled trial of ibuprofen compared with acetaminophen." Ann Intern Med 107 (1987): 628-35
  3. Silberbauer K, Stanek B, Templ H "Acute hypotensive effect of captopril in man modified by prostaglandin synthesis inhibition." Br J Clin Pharmacol 14 (1982): s87-93
  4. Ahmad S "Indomethacin-enalapril interaction: an alert." South Med J 84 (1991): 411-2
  5. Allon M, Pasque CB, Rodriguez M "Interaction of captopril and ibuprofen on glomerular and tubular function in humans." Am J Physiol 259 (1990): f233-8
  6. Seto S, Aoi W, Iwami K, et al. "Effect of propranolol and indomethacin on the depressor action of captopril in patients with essential hypertension." Clin Exp Hypertens 9 (1987): 623-7
  7. "Product Information. Toradol (ketorolac)." Roche Laboratories PROD (2002):
  8. Abdel-Haq B, Magagna A, Favilla S, Salvetti A "Hemodynamic and humoral interactions between perindopril and indomethacin in essential hypertensive subjects." J Cardiovasc Pharmacol 18 (1991): s33-6
  9. Morgan T, Anderson A "Interaction of indomethacin with felodipine and enalapril." J Hypertens 11 (1993): S338-9
  10. "Product Information. Daypro (oxaprozin)." Searle PROD (2001):
  11. Townend JN, Doran J, Lote CJ, Davies MK "Peripheral haemodynamic effects of inhibition of prostaglandin synthesis in congestive heart failure and interactions with captopril." Br Heart J 73 (1995): 434-41
  12. Polonia J, Boaventura I, Gama G, Camoes I, Bernardo F, Andrade P, Nunes JP, Brandao F, Cerqueiragomes M "Influence of non-steroidal anti-inflammatory drugs on renal function and 24h ambulatory blood pressure-reducing effects of enalapril and nifedipine gastrointestinal therapeutic system in hypertensive patients." J Hypertens 13 (1995): 925-31
  13. "Product Information. Celebrex (celecoxib)." Searle PROD (2001):
View all 13 references

Switch to consumer interaction data

Moderate

sodium salicylate sodium citrate

Applies to: Scot-Tussin Original (old formulation) (caffeine / pheniramine / phenylephrine / sodium citrate / sodium salicylate) and Scot-Tussin Original (old formulation) (caffeine / pheniramine / phenylephrine / sodium citrate / sodium salicylate)

MONITOR: Agents that cause urinary alkalinization can reduce serum salicylate concentrations in patients receiving anti-inflammatory dosages of aspirin or other salicylates. The mechanism involves reduction in salicylate renal tubular reabsorption due to increased urinary pH, resulting in increased renal salicylate clearance especially above urine pH of 7. This interaction is sometimes exploited in the treatment of salicylate toxicity.

MANAGEMENT: Patients treated chronically with urinary alkalinizers and large doses of salicylates (i.e. 3 g/day or more) should be monitored for potentially diminished or inadequate analgesic and anti-inflammatory effects, and the salicylate dosage adjusted if necessary.

References

  1. Berg KJ "Acute acetylsalicylic acid poisoning: treatment with forced alkaline diuresis and diuretics." Eur J Clin Pharmacol 12 (1977): 111-6
  2. Prescott LF, Balali-Mood M, Critchley JA, Johnstone AF, Proudfoot AT "Diuresis or urinary alkalinisation for salicylate poisoning?" Br Med J (Clin Res Ed) 285 (1982): 1383-6
  3. Balali-Mood M, Prescott LF "Failure of alkaline diuresis to enhance diflunisal elimination." Br J Clin Pharmacol 10 (1980): 163-5
  4. Berg KJ "Acute effects of acetylsalicylic acid in patients with chronic renal insufficiency." Eur J Clin Pharmacol 11 (1977): 111-6
  5. Brouwers JRBJ, Desmet PAGM "Pharmacokinetic-pharmacodynamic drug interactions with nonsteroidal anti-inflammatory drugs." Clin Pharmacokinet 27 (1994): 462-85
View all 5 references

Switch to consumer interaction data

Minor

amLODIPine benazepril

Applies to: Amlobenz (amlodipine / benazepril) and Amlobenz (amlodipine / benazepril)

Calcium channel blockers and angiotensin converting enzyme (ACE) inhibitors may have additive hypotensive effects. While these drugs are often safely used together, careful monitoring of the systemic blood pressure is recommended during coadministration, especially during the first one to three weeks of therapy.

References

  1. Kaplan NM "Amlodipine in the treatment of hypertension." Postgrad Med J 67 Suppl 5 (1991): s15-9
  2. DeQuattro V "Comparison of benazepril and other antihypertensive agents alone and in combination with the diuretic hydrochlorothiazide." Clin Cardiol 14 (1991): iv28-32;
  3. Sun JX, Cipriano A, Chan K, John VA "Pharmacokinetic interaction study between benazepril and amlodipine in healthy subjects." Eur J Clin Pharmacol 47 (1994): 285-9
  4. Di Somma S, et al. "Antihypertensive effects of verapamil, captopril and their combination at rest and during dynamic exercise." Arzneimittelforschung 42 (1992): 103
View all 4 references

Switch to consumer interaction data

Minor

benazepril sodium citrate

Applies to: Amlobenz (amlodipine / benazepril) and Scot-Tussin Original (old formulation) (caffeine / pheniramine / phenylephrine / sodium citrate / sodium salicylate)

Coadministration with antacids may decrease the oral bioavailability of captopril and other angiotensin converting enzyme (ACE) inhibitors due to delayed gastric emptying and/or elevated gastric pH. In 10 healthy volunteers, 50 mL of an antacid suspension decreased the mean peak plasma concentration (Cmax) and area under the concentration-time curve (AUC) of captopril (50 mg single oral dose) by 50% and 42%, respectively, compared to administration after fasting. The relative bioavailability of captopril was 0.66 with antacid, although its hypotensive activity did not seem to be affected. Based on available data, the clinical significance of this interaction appears to be minor. As a precaution, patients may want to consider separating the administration times of ACE inhibitors and antacids or oral medications that contain antacids (e.g., didanosine buffered tablets or pediatric oral solution) by 1 to 2 hours.

References

  1. Mantyla R, Mannisto PT, Vuorela A, Sundberg S, Ottoila P "Impairment of captopril bioavailability by concomitant food and antacid intake." Int J Clin Pharmacol Ther Toxicol 22 (1984): 626-9

Switch to consumer interaction data

Drug and food interactions

Moderate

benazepril food

Applies to: Amlobenz (amlodipine / benazepril)

GENERALLY AVOID: Moderate-to-high dietary intake of potassium can cause hyperkalemia in some patients who are using angiotensin converting enzyme (ACE) inhibitors. In some cases, affected patients were using a potassium-rich salt substitute. ACE inhibitors can promote hyperkalemia through inhibition of the renin-aldosterone-angiotensin (RAA) system.

MANAGEMENT: It is recommended that patients who are taking ACE inhibitors be advised to avoid moderately high or high potassium dietary intake. Particular attention should be paid to the potassium content of salt substitutes.

References

  1. "Product Information. Vasotec (enalapril)." Merck & Co., Inc PROD (2002):
  2. Good CB, McDermott L "Diet and serum potassium in patients on ACE inhibitors." JAMA 274 (1995): 538
  3. Ray K, Dorman S, Watson R "Severe hyperkalaemia due to the concomitant use of salt substitutes and ACE inhibitors in hypertension: a potentially life threatening interaction." J Hum Hypertens 13 (1999): 717-20

Switch to consumer interaction data

Moderate

pheniramine food

Applies to: Scot-Tussin Original (old formulation) (caffeine / pheniramine / phenylephrine / sodium citrate / sodium salicylate)

GENERALLY AVOID: Alcohol may potentiate some of the pharmacologic effects of CNS-active agents. Use in combination may result in additive central nervous system depression and/or impairment of judgment, thinking, and psychomotor skills.

MANAGEMENT: Patients receiving CNS-active agents should be warned of this interaction and advised to avoid or limit consumption of alcohol. Ambulatory patients should be counseled to avoid hazardous activities requiring complete mental alertness and motor coordination until they know how these agents affect them, and to notify their physician if they experience excessive or prolonged CNS effects that interfere with their normal activities.

References

  1. Warrington SJ, Ankier SI, Turner P "Evaluation of possible interactions between ethanol and trazodone or amitriptyline." Neuropsychobiology 15 (1986): 31-7
  2. Gilman AG, eds., Nies AS, Rall TW, Taylor P "Goodman and Gilman's the Pharmacological Basis of Therapeutics." New York, NY: Pergamon Press Inc. (1990):
  3. "Product Information. Fycompa (perampanel)." Eisai Inc (2012):
  4. "Product Information. Rexulti (brexpiprazole)." Otsuka American Pharmaceuticals Inc (2015):
View all 4 references

Switch to consumer interaction data

Moderate

amLODIPine food

Applies to: Amlobenz (amlodipine / benazepril)

MONITOR: Many psychotherapeutic and CNS-active agents (e.g., anxiolytics, sedatives, hypnotics, antidepressants, antipsychotics, opioids, alcohol, muscle relaxants) exhibit hypotensive effects, especially during initiation of therapy and dose escalation. Coadministration with antihypertensives and other hypotensive agents, in particular vasodilators and alpha-blockers, may result in additive effects on blood pressure and orthostasis.

MANAGEMENT: Caution and close monitoring for development of hypotension is advised during coadministration of these agents. Some authorities recommend avoiding alcohol in patients receiving vasodilating antihypertensive drugs. Patients should be advised to avoid rising abruptly from a sitting or recumbent position and to notify their physician if they experience dizziness, lightheadedness, syncope, orthostasis, or tachycardia.

References

  1. Sternbach H "Fluoxetine-associated potentiation of calcium-channel blockers." J Clin Psychopharmacol 11 (1991): 390-1
  2. Shook TL, Kirshenbaum JM, Hundley RF, Shorey JM, Lamas GA "Ethanol intoxication complicating intravenous nitroglycerin therapy." Ann Intern Med 101 (1984): 498-9
  3. Feder R "Bradycardia and syncope induced by fluoxetine." J Clin Psychiatry 52 (1991): 139
  4. Ellison JM, Milofsky JE, Ely E "Fluoxetine-induced bradycardia and syncope in two patients." J Clin Psychiatry 51 (1990): 385-6
  5. Rodriguez de la Torre B, Dreher J, Malevany I, et al. "Serum levels and cardiovascular effects of tricyclic antidepressants and selective serotonin reuptake inhibitors in depressed patients." Ther Drug Monit 23 (2001): 435-40
  6. Cerner Multum, Inc. "Australian Product Information." O 0
  7. Pacher P, Kecskemeti V "Cardiovascular side effects of new antidepressants and antipsychotics: new drugs, old concerns?" Curr Pharm Des 10 (2004): 2463-75
  8. Andrews C, Pinner G "Postural hypotension induced by paroxetine." BMJ 316 (1998): 595
View all 8 references

Switch to consumer interaction data

Moderate

benazepril food

Applies to: Amlobenz (amlodipine / benazepril)

MONITOR: Many psychotherapeutic and CNS-active agents (e.g., anxiolytics, sedatives, hypnotics, antidepressants, antipsychotics, opioids, alcohol, muscle relaxants) exhibit hypotensive effects, especially during initiation of therapy and dose escalation. Coadministration with antihypertensives and other hypotensive agents, in particular vasodilators and alpha-blockers, may result in additive effects on blood pressure and orthostasis.

MANAGEMENT: Caution and close monitoring for development of hypotension is advised during coadministration of these agents. Some authorities recommend avoiding alcohol in patients receiving vasodilating antihypertensive drugs. Patients should be advised to avoid rising abruptly from a sitting or recumbent position and to notify their physician if they experience dizziness, lightheadedness, syncope, orthostasis, or tachycardia.

References

  1. Sternbach H "Fluoxetine-associated potentiation of calcium-channel blockers." J Clin Psychopharmacol 11 (1991): 390-1
  2. Shook TL, Kirshenbaum JM, Hundley RF, Shorey JM, Lamas GA "Ethanol intoxication complicating intravenous nitroglycerin therapy." Ann Intern Med 101 (1984): 498-9
  3. Feder R "Bradycardia and syncope induced by fluoxetine." J Clin Psychiatry 52 (1991): 139
  4. Ellison JM, Milofsky JE, Ely E "Fluoxetine-induced bradycardia and syncope in two patients." J Clin Psychiatry 51 (1990): 385-6
  5. Rodriguez de la Torre B, Dreher J, Malevany I, et al. "Serum levels and cardiovascular effects of tricyclic antidepressants and selective serotonin reuptake inhibitors in depressed patients." Ther Drug Monit 23 (2001): 435-40
  6. Cerner Multum, Inc. "Australian Product Information." O 0
  7. Pacher P, Kecskemeti V "Cardiovascular side effects of new antidepressants and antipsychotics: new drugs, old concerns?" Curr Pharm Des 10 (2004): 2463-75
  8. Andrews C, Pinner G "Postural hypotension induced by paroxetine." BMJ 316 (1998): 595
View all 8 references

Switch to consumer interaction data

Moderate

amLODIPine food

Applies to: Amlobenz (amlodipine / benazepril)

MONITOR: Calcium-containing products may decrease the effectiveness of calcium channel blockers by saturating calcium channels with calcium. Calcium chloride has been used to manage acute severe verapamil toxicity.

MANAGEMENT: Management consists of monitoring the effectiveness of calcium channel blocker therapy during coadministration with calcium products.

References

  1. Henry M, Kay MM, Viccellio P "Cardiogenic shock associated with calcium-channel and beta blockers: reversal with intravenous calcium chloride." Am J Emerg Med 3 (1985): 334-6
  2. Moller IW "Cardiac arrest following intravenous verapamil combined with halothane anaesthesia." Br J Anaesth 59 (1987): 522-6
  3. Oszko MA, Klutman NE "Use of calcium salts during cardiopulmonary resuscitation for reversing verapamil-associated hypotension." Clin Pharm 6 (1987): 448-9
  4. Schoen MD, Parker RB, Hoon TJ, et al. "Evaluation of the pharmacokinetics and electrocardiographic effects of intravenous verapamil with intravenous calcium chloride pretreatment in normal subjects." Am J Cardiol 67 (1991): 300-4
  5. O'Quinn SV, Wohns DH, Clarke S, Koch G, Patterson JH, Adams KF "Influence of calcium on the hemodynamic and anti-ischemic effects of nifedipine observed during treadmill exercise testing." Pharmacotherapy 10 (1990): 247
  6. Woie L, Storstein L "Successful treatment of suicidal verapamil poisoning with calcium gluconate." Eur Heart J 2 (1981): 239-42
  7. Morris DL, Goldschlager N "Calcium infusion for reversal of adverse effects of intravenous verapamil." JAMA 249 (1983): 3212-3
  8. Guadagnino V, Greengart A, Hollander G, Solar M, Shani J, Lichstein E "Treatment of severe left ventricular dysfunction with calcium chloride in patients receiving verapamil." J Clin Pharmacol 27 (1987): 407-9
  9. Luscher TF, Noll G, Sturmer T, Huser B, Wenk M "Calcium gluconate in severe verapamil intoxication." N Engl J Med 330 (1994): 718-20
  10. Bar-Or D, Gasiel Y "Calcium and calciferol antagonise effect of verapamil in atrial fibrillation." Br Med J (Clin Res Ed) 282 (1981): 1585-6
  11. Lipman J, Jardine I, Roos C, Dreosti L "Intravenous calcium chloride as an antidote to verapamil-induced hypotension." Intensive Care Med 8 (1982): 55-7
  12. McMillan R "Management of acute severe verapamil intoxication." J Emerg Med 6 (1988): 193-6
  13. Perkins CM "Serious verapamil poisoning: treatment with intravenous calcium gluconate." Br Med J 2 (1978): 1127
  14. Moroni F, Mannaioni PF, Dolara A, Ciaccheri M "Calcium gluconate and hypertonic sodium chloride in a case of massive verapamil poisoning." Clin Toxicol 17 (1980): 395-400
View all 14 references

Switch to consumer interaction data

Moderate

phenylephrine food

Applies to: Scot-Tussin Original (old formulation) (caffeine / pheniramine / phenylephrine / sodium citrate / sodium salicylate)

MONITOR: Coadministration of two or more sympathomimetic agents may increase the risk of adverse effects such as nervousness, irritability, and increased heart rate. Central nervous system (CNS) stimulants, particularly amphetamines, can potentiate the adrenergic response to vasopressors and other sympathomimetic agents. Additive increases in blood pressure and heart rate may occur due to enhanced peripheral sympathetic activity.

MANAGEMENT: Caution is advised if two or more sympathomimetic agents are coadministered. Pulse and blood pressure should be closely monitored.

References

  1. Rosenblatt JE, Lake CR, van Kammen DP, Ziegler MG, Bunney WE Jr "Interactions of amphetamine, pimozide, and lithium on plasma norepineophrine and dopamine-beta-hydroxylase in schizophrenic patients." Psychiatry Res 1 (1979): 45-52
  2. Cavanaugh JH, Griffith JD, Oates JA "Effect of amphetamine on the pressor response to tyramine: formation of p-hydroxynorephedrine from amphetamine in man." Clin Pharmacol Ther 11 (1970): 656
  3. "Product Information. Adderall (amphetamine-dextroamphetamine)." Shire Richwood Pharmaceutical Company Inc PROD (2001):
  4. "Product Information. Tenuate (diethylpropion)." Aventis Pharmaceuticals PROD (2001):
  5. "Product Information. Sanorex (mazindol)." Novartis Pharmaceuticals PROD (2001):
  6. "Product Information. Focalin (dexmethylphenidate)." Mikart Inc (2001):
  7. "Product Information. Strattera (atomoxetine)." Lilly, Eli and Company (2002):
View all 7 references

Switch to consumer interaction data

Minor

amLODIPine food

Applies to: Amlobenz (amlodipine / benazepril)

The consumption of grapefruit juice may slightly increase plasma concentrations of amlodipine. The mechanism is inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall by certain compounds present in grapefruits. Data have been conflicting and the clinical significance is unknown. Monitoring for calcium channel blocker adverse effects (e.g., headache, hypotension, syncope, tachycardia, edema) is recommended.

References

  1. Bailey DG, Arnold JMO, Spence JD "Grapefruit juice and drugs - how significant is the interaction." Clin Pharmacokinet 26 (1994): 91-8
  2. Josefsson M, Zackrisson AL, Ahlner J "Effect of grapefruit juice on the pharmacokinetics of amlodipine in healthy volunteers." Eur J Clin Pharmacol 51 (1996): 189-93
  3. Bailey DG, Malcolm J, Arnold O, Spence JD "Grapefruit juice-drug interactions." Br J Clin Pharmacol 46 (1998): 101-10
  4. Vincent J, Harris SI, Foulds G, Dogolo LC, Willavize S, Friedman HL "Lack of effect of grapefruit juice on the pharmacokinetics and pharmacodynamics of amlodipine." Br J Clin Pharmacol 50 (2000): 455-63
  5. Josefsson M, Ahlner J "Amlodipine and grapefruit juice." Br J Clin Pharmacol 53 (2002): 405; discussion 406
  6. Kane GC, Lipsky JJ "Drug-grapefruit juice interactions." Mayo Clin Proc 75 (2000): 933-42
View all 6 references

Switch to consumer interaction data

Minor

caffeine food

Applies to: Scot-Tussin Original (old formulation) (caffeine / pheniramine / phenylephrine / sodium citrate / sodium salicylate)

The effect of grapefruit juice on the pharmacologic activity of caffeine is controversial. One report suggests that grapefruit juice increases the effect of caffeine. The proposed mechanism is inhibition of cytochrome P-450 metabolism of caffeine. However, a well-conducted pharmacokinetic/pharmacodynamic study did not demonstrate this effect. The clinical significance of this potential interaction is unknown.

References

  1. "Grapefruit juice interactions with drugs." Med Lett Drugs Ther 37 (1995): 73-4
  2. Maish WA, Hampton EM, Whitsett TL, Shepard JD, Lovallo WR "Influence of grapefruit juice on caffeine pharmacokinetics and pharmacodynamics." Pharmacotherapy 16 (1996): 1046-52

Switch to consumer interaction data

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Loading...
QR code containing a link to this page

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.