Drug Interactions between amitriptyline and Sivextro
This report displays the potential drug interactions for the following 2 drugs:
- amitriptyline
- Sivextro (tedizolid)
Interactions between your drugs
amitriptyline tedizolid
Applies to: amitriptyline and Sivextro (tedizolid)
MONITOR: The concurrent use of tedizolid with agents that have serotonergic activity including serotonin reuptake inhibitors, monoamine oxidase inhibitors (MAOIs), tricyclic antidepressants, 5-HT1 receptor agonists, ergot alkaloids, cyclobenzaprine, lithium, St. John's wort, phenylpiperidine opioids, dextromethorphan, and tryptophan may elevate the risk of developing serotonin syndrome. The proposed mechanism is tedizolid-mediated non-selective and reversible inhibition of monoamine oxidase (MAO), with more potent inhibition of MAO-A than linezolid in vitro. In a retrospective cohort study from January 2015 to July 2023 of 479 adult patients receiving tedizolid, 62% (297/479) received concomitant serotonergic agents, but suspected serotonin syndrome requiring tedizolid discontinuation was found to be rare, occurring in only 0.4% (2/479) of cases. Symptoms of serotonin syndrome may include mental status changes such as irritability, altered consciousness, confusion, hallucination, and coma; autonomic dysfunction such as tachycardia, hyperthermia, diaphoresis, shivering, unstable blood pressure, and mydriasis; neuromuscular abnormalities such as hyperreflexia, myoclonus, tremor, rigidity, and ataxia; and gastrointestinal symptoms such as abdominal cramping, nausea, vomiting, and diarrhea.
MANAGEMENT: Caution and closer monitoring for serotonin syndrome are recommended during concomitant treatment with tedizolid and serotonergic agents, especially during dose escalations, and patients should be instructed to notify their healthcare provider if they experience symptoms of serotonin syndrome. Due to variability and occasionally prolonged half-lives of these coadministered agents, consulting individual product labeling for specific guidance is advised. If serotonin syndrome is suspected, discontinuation of therapy or dose reductions should be considered depending on the severity of the symptoms, and supportive care should be provided. Moderately ill patients may benefit from serotonin antagonists like cyproheptadine or chlorpromazine. Severe cases require consultation with a toxicologist and may need sedation, neuromuscular paralysis, intubation, and mechanical ventilation.
References (4)
- Fang Y, Clarke LG, smith bj, Shah S (2024) "Incidence of serotonin syndrome in patients receiving tedizolid and concomitant serotonergic agents" Antimicrob Agents Chemother, 68, p. 1-5
- (2023) "Product Information. Sivextro (tedizolid)." Merck Sharp & Dohme LLC
- (2024) "Product Information. Sivextro (tedizolid)." Merck Sharp & Dohme (UK) Ltd
- (2020) "Product Information. SIVEXTRO (tedizolid)." MERCK SHARP AND DOHME LTD.
Drug and food interactions
amitriptyline food
Applies to: amitriptyline
GENERALLY AVOID: Concomitant use of ethanol and a tricyclic antidepressant (TCA) may result altered TCA plasma levels and efficacy, and additive impairment of motor skills, especially driving skills. Acute ethanol ingestion may inhibit TCA metabolism, while chronic ingestion of large amounts of ethanol may induce hepatic TCA metabolism.
MANAGEMENT: Patients should be advised to avoid alcohol during TCA therapy. Alcoholics who have undergone detoxification should be monitored for decreased TCA efficacy. Dosage adjustments may be required.
References (7)
- Dorian P, Sellers EM, Reed KL, et al. (1983) "Amitriptyline and ethanol: pharmacokinetic and pharmacodynamic interaction." Eur J Clin Pharmacol, 25, p. 325-31
- Warrington SJ, Ankier SI, Turner P (1986) "Evaluation of possible interactions between ethanol and trazodone or amitriptyline." Neuropsychobiology, 15, p. 31-7
- Sandoz M, Vandel S, Vandel B, Bonin B, Allers G, Volmat R (1983) "Biotransformation of amitriptyline in alcoholic depressive patients." Eur J Clin Pharmacol, 24, p. 615-21
- Ciraulo DA, Barnhill JG, Jaffe JH (1988) "Clinical pharmacokinetics of imipramine and desipramine in alcoholics and normal volunteers." Clin Pharmacol Ther, 43, p. 509-18
- Seppala T, Linnoila M, Elonen E, Mattila MJ, Makl M (1975) "Effect of tricyclic antidepressants and alcohol on psychomotor skills related to driving." Clin Pharmacol Ther, 17, p. 515-22
- Ciraulo DA, Barnhill JG, Jaffe JH, Ciraulo AM, Tarmey MF (1990) "Intravenous pharmacokinetics of 2-hydroxyimipramine in alcoholics and normal controls." J Stud Alcohol, 51, p. 366-72
- Ciraulo DA, Alderson LM, Chapron DJ, Jaffe JH, Subbarao B, Kramer PA (1982) "Imipramine disposition in alcoholics." J Clin Psychopharmacol, 2, p. 2-7
amitriptyline food
Applies to: amitriptyline
MONITOR: Smoking cessation may lead to elevated plasma concentrations and enhanced pharmacologic effects of drugs that are substrates of CYP450 1A2 (and possibly CYP450 1A1) and/or certain drugs with a narrow therapeutic index (e.g., flecainide, pentazocine). One proposed mechanism is related to the loss of CYP450 1A2 and 1A1 induction by polycyclic aromatic hydrocarbons in tobacco smoke; when smoking cessation agents are initiated and smoking stops, the metabolism of certain drugs may decrease leading to increased plasma concentrations. The mechanism by which smoking cessation affects narrow therapeutic index drugs that are not known substrates of CYP450 1A2 or 1A1 is unknown. The clinical significance of this interaction is unknown as clinical data are lacking.
MANAGEMENT: Until more information is available, caution is advisable if smoking cessation agents are used concomitantly with drugs that are substrates of CYP450 1A2 or 1A1 and/or those with a narrow therapeutic range. Patients receiving smoking cessation agents may require periodic dose adjustments and closer clinical and laboratory monitoring of medications that are substrates of CYP450 1A2 or 1A1.
References (4)
- (2024) "Product Information. Cytisine (cytisinicline)." Consilient Health Ltd
- jeong sh, Newcombe D, sheridan j, Tingle M (2015) "Pharmacokinetics of cytisine, an a4 b2 nicotinic receptor partial agonist, in healthy smokers following a single dose." Drug Test Anal, 7, p. 475-82
- Vaughan DP, Beckett AH, Robbie DS (1976) "The influence of smoking on the intersubject variation in pentazocine elimination." Br J Clin Pharmacol, 3, p. 279-83
- Zevin S, Benowitz NL (1999) "Drug interactions with tobacco smoking: an update" Clin Pharmacokinet, 36, p. 425-38
Therapeutic duplication warnings
No warnings were found for your selected drugs.
Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.
See also
Drug Interaction Classification
Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit. | |
Moderately clinically significant. Usually avoid combinations; use it only under special circumstances. | |
Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan. | |
No interaction information available. |
Further information
Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.
Check Interactions
To view an interaction report containing 4 (or more) medications, please sign in or create an account.
Save Interactions List
Sign in to your account to save this drug interaction list.