Skip to main content

Drug Interactions between adagrasib and codeine / phenylephrine / promethazine

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Major

promethazine adagrasib

Applies to: codeine / phenylephrine / promethazine and adagrasib

GENERALLY AVOID: Adagrasib can cause concentration-dependent, prolongation of the QT interval. Coadministration with other agents that can prolong the QT interval may increase the risk of ventricular arrhythmias including torsade de pointes and sudden death. According to cardiac electrophysiology data provided by the manufacturer, the mean (90% CI) QTcF change from baseline was 18 ms at the mean steady-state maximum concentration (Cmax,ss) after administration of adagrasib 600 mg twice daily. In general, the risk of an individual agent or a combination of agents causing ventricular arrhythmia in association with QT prolongation is largely unpredictable but may be increased by certain underlying risk factors such as congenital long QT syndrome, cardiac disease, and electrolyte disturbances (e.g., hypokalemia, hypomagnesemia). In addition, the extent of drug-induced QT prolongation is dependent on the particular drug(s) involved and dosage(s) of the drug(s).

GENERALLY AVOID: Adagrasib may increase the plasma concentrations and adverse effects of sensitive CYP450 2C9, 2D6 or P-glycoprotein (P-gp) substrates. Adagrasib is an inhibitor of CYP450 2C9, 2D6, and P-gp. In pharmacokinetic studies, adagrasib 600 mg twice daily is predicted to increase warfarin (a sensitive CYP450 2C9 substrate) peak plasma concentration (Cmax) and systemic exposure (AUC) by 1.1-fold and 2.9-fold, respectively. Also, adagrasib 600 mg twice daily is predicted to increase dextromethorphan (a sensitive CYP450 2D6 substrate) Cmax and AUC by 1.7-fold and 2.4-fold, respectively. In addition, adagrasib 600 mg twice daily is predicted to increase digoxin (a P-gp substrate) Cmax and AUC by 1.9-fold and 1.5-fold, respectively.

MANAGEMENT: Coadministration of adagrasib with other drugs that can prolong the QT interval and/or are sensitive substrates of CYP450 2C9, 2D6 or P-gp should generally be avoided.

References

  1. (2022) "Product Information. Krazati (adagrasib)." Mirati Therapeutics, Inc.

Switch to consumer interaction data

Moderate

codeine promethazine

Applies to: codeine / phenylephrine / promethazine and codeine / phenylephrine / promethazine

MONITOR: Central nervous system- and/or respiratory-depressant effects may be additively or synergistically increased in patients taking multiple drugs that cause these effects, especially in elderly or debilitated patients. Sedation and impairment of attention, judgment, thinking, and psychomotor skills may increase.

MANAGEMENT: During concomitant use of these drugs, patients should be monitored for potentially excessive or prolonged CNS and respiratory depression. Cautious dosage titration may be required, particularly at treatment initiation. Ambulatory patients should be counseled to avoid hazardous activities requiring mental alertness and motor coordination until they know how these agents affect them, and to notify their physician if they experience excessive or prolonged CNS effects that interfere with their normal activities.

References

  1. Hamilton MJ, Bush M, Smith P, Peck AW (1982) "The effects of bupropion, a new antidepressant drug, and diazepam, and their interaction in man." Br J Clin Pharmacol, 14, p. 791-7
  2. Stambaugh JE, Lane C (1983) "Analgesic efficacy and pharmacokinetic evaluation of meperidine and hydroxyzine, alone and in combination." Cancer Invest, 1, p. 111-7
  3. Sotaniemi EA, Anttila M, Rautio A, et al. (1981) "Propranolol and sotalol metabolism after a drinking party." Clin Pharmacol Ther, 29, p. 705-10
  4. Grabowski BS, Cady WJ, Young WW, Emery JF (1980) "Effects of acute alcohol administration on propranolol absorption." Int J Clin Pharmacol Ther Toxicol, 18, p. 317-9
  5. Lemberger L, Rowe H, Bosomworth JC, Tenbarge JB, Bergstrom RF (1988) "The effect of fluoxetine on the pharmacokinetics and psychomotor responses of diazepam." Clin Pharmacol Ther, 43, p. 412-9
  6. MacLeod SM, Giles HG, Patzalek G, Thiessen JJ, Sellers EM (1977) "Diazepam actions and plasma concentrations following ethanol ingestion." Eur J Clin Pharmacol, 11, p. 345-9
  7. Divoll M, Greenblatt DJ, Lacasse Y, Shader RI (1981) "Benzodiazepine overdosage: plasma concentrations and clinical outcome." Psychopharmacology (Berl), 73, p. 381-3
  8. Naylor GJ, McHarg A (1977) "Profound hypothermia on combined lithium carbonate and diazepam treatment." Br Med J, 2, p. 22
  9. Stovner J, Endresen R (1965) "Intravenous anaesthesia with diazepam." Acta Anaesthesiol Scand, 24, p. 223-7
  10. Driessen JJ, Vree TB, Booij LH, van der Pol FM, Crul JF (1984) "Effect of some benzodiazepines on peripheral neuromuscular function in the rat in-vitro hemidiaphragm preparation." J Pharm Pharmacol, 36, p. 244-7
  11. Feldman SA, Crawley BE (1970) "Interaction of diazepam with the muscle-relaxant drugs." Br Med J, 1, p. 336-8
  12. Ochs HR, Greenblatt DJ, Verburg-Ochs B (1984) "Propranolol interactions with diazepam, lorazepam and alprazolam." Clin Pharmacol Ther, 36, p. 451-5
  13. Desager JP, Hulhoven R, Harvengt C, Hermann P, Guillet P, Thiercelin JF (1988) "Possible interactions between zolpidem, a new sleep inducer and chlorpromazine, a phenothiazine neuroleptic." Psychopharmacology (Berl), 96, p. 63-6
  14. Tverskoy M, Fleyshman G, Ezry J, Bradley EL, Jr Kissin I (1989) "Midazolam-morphine sedative interaction in patients." Anesth Analg, 68, p. 282-5
  15. "Product Information. Iopidine (apraclonidine ophthalmic)." Alcon Laboratories Inc
  16. Greiff JMC, Rowbotham D (1994) "Pharmacokinetic drug interactions with gastrointestinal motility modifying agents." Clin Pharmacokinet, 27, p. 447-61
  17. Greb WH, Buscher G, Dierdorf HD, Koster FE, Wolf D, Mellows G (1989) "The effect of liver enzyme inhibition by cimetidine and enzyme induction by phenobarbitone on the pharmacokinetics of paroxetine." Acta Psychiatr Scand, 80 Suppl, p. 95-8
  18. Markowitz JS, Wells BG, Carson WH (1995) "Interactions between antipsychotic and antihypertensive drugs." Ann Pharmacother, 29, p. 603-9
  19. (2001) "Product Information. Ultram (tramadol)." McNeil Pharmaceutical
  20. (2001) "Product Information. Artane (trihexyphenidyl)." Lederle Laboratories
  21. (2001) "Product Information. Ultiva (remifentanil)." Mylan Institutional (formally Bioniche Pharma USA Inc)
  22. (2001) "Product Information. Seroquel (quetiapine)." Astra-Zeneca Pharmaceuticals
  23. (2001) "Product Information. Meridia (sibutramine)." Knoll Pharmaceutical Company
  24. (2001) "Product Information. Tasmar (tolcapone)." Valeant Pharmaceuticals
  25. Miller LG (1998) "Herbal medicinals: selected clinical considerations focusing on known or potential drug-herb interactions." Arch Intern Med, 158, p. 2200-11
  26. (2001) "Product Information. Precedex (dexmedetomidine)." Abbott Pharmaceutical
  27. (2001) "Product Information. Trileptal (oxcarbazepine)." Novartis Pharmaceuticals
  28. Ferslew KE, Hagardorn AN, McCormick WF (1990) "A fatal interaction of methocarbamol and ethanol in an accidental poisoning." J Forensic Sci, 35, p. 477-82
  29. Plushner SL (2000) "Valerian: valeriana officinalis." Am J Health Syst Pharm, 57, p. 328-35
  30. (2002) "Product Information. Xatral (alfuzosin)." Sanofi-Synthelabo Canada Inc
  31. (2002) "Product Information. Lexapro (escitalopram)." Forest Pharmaceuticals
  32. Cerner Multum, Inc. "UK Summary of Product Characteristics."
  33. Cerner Multum, Inc. "Australian Product Information."
  34. (2012) "Product Information. Fycompa (perampanel)." Eisai Inc
  35. (2014) "Product Information. Belsomra (suvorexant)." Merck & Co., Inc
  36. (2015) "Product Information. Rexulti (brexpiprazole)." Otsuka American Pharmaceuticals Inc
View all 36 references

Switch to consumer interaction data

Moderate

codeine adagrasib

Applies to: codeine / phenylephrine / promethazine and adagrasib

MONITOR: Drugs that are inhibitors of CYP450 2D6 may interfere with the analgesic effect of codeine. The mechanism is decreased in vivo conversion of codeine to morphine, a metabolic reaction mediated by CYP450 2D6. If an inhibitor is started after a stable dose of codeine is achieved, reduced analgesia and possible opioid withdrawal may result. Conversely, ceasing CYP450 2D6 inhibitor therapy may lead to increased morphine levels, increasing the risk of opioid-related adverse effects.

MANAGEMENT: The possibility of reduced or inadequate pain relief should be considered in patients receiving codeine with drugs that inhibit CYP450 2D6. An increase in the codeine dosage or a different analgesic agent may be necessary in patients requiring therapy with CYP450 2D6 inhibitors. If concurrent therapy is used and the CYP450 2D6 inhibitor is stopped, the dose of codeine may need to be reduced and the patient should be monitored for signs and symptoms of respiratory depression or sedation. In addition, it should be noted that rolapitant, a moderate CYP450 2D6 inhibitor, may interfere with the analgesic effects of codeine for at least 28 days after administration of rolapitant. The manufacturer's prescribing information should be consulted for further information.

References

  1. Desmeules J, Dayer P, Gascon MP, Magistris M (1989) "Impact of genetic and environmental factors on codeine analgesia." Clin Pharmacol Ther, 45, p. 122
  2. Sindrup SH, Arendt-Nielsen L, Brosen K, et al. (1992) "The effect of quinidine on the analgesic effect of codeine." Eur J Clin Pharmacol, 42, p. 587-92
  3. Sindrup SH, Hofmann U, Asmussen J, Mikus G, Brosen K, Nielsen F, Ingwersen SH, Broen Christensen C (1996) "Impact of quinidine on plasma and cerebrospinal fluid concentrations of codeine and morphine after codeine intake." Eur J Clin Pharmacol, 49, p. 503-9
  4. Sindrup SH, Brosen K, Bjerring P, et al. (1991) "Codeine increases pain threshold to copper vapor laser stimuli in extensive but not poor metabolizers of sparteine." Clin Pharmacol Ther, 49, p. 686-93
  5. Poulsen L, Brosen K, Srendt-Nielsen L, Gram LF, Elbaek K, Sindrup SH (1996) "Codeine and morphine in extensive and poor metabolizers of sparteine: pharmacokinetics, analgesic effect and side effects." Eur J Clin Pharmacol, 51, p. 289-95
  6. Desmeules J, Gascon MP, Dayer P, Magistris M (1991) "Impact of environmental and genetic factors on codeine analgesia." Eur J Clin Pharmacol, 41, p. 23-6
  7. Caraco Y, Sheller J, Wood JJ (1996) "Pharmacogenetic determination of the effects of codeine and prediction of drug interactions." J Pharmacol Exp Ther, 278, p. 1165-74
  8. Caraco Y, Sheller J, Wood AJJ (1999) "Impact of ethnic origin and quinidine coadministration on codeine's disposition and pharmacodynamic effects." J Pharmacol Exp Ther, 290, p. 413-22
  9. Hersh EV, Moore PA (2004) "Drug interactions in dentistry: the importance of knowing your CYPs." J Am Dent Assoc, 135, p. 298-311
  10. Vevelstad M, Pettersen S, Tallaksen C, Brors O (2009) "O-demethylation of codeine to morphine inhibited by low-dose levomepromazine." Eur J Clin Pharmacol, 65, p. 795-801
  11. Thorn CF, Klein TE, Altman RB (2009) "Codeine and morphine pathway." Pharmacogenet Genomics, 19, p. 556-8
  12. Zhou SF (2009) "Polymorphism of human cytochrome P450 2D6 and its clinical significance: part II." Clin Pharmacokinet, 48, p. 761-804
  13. (2015) "Product Information. Varubi (rolapitant)." Tesaro Inc.
  14. (2023) "Product Information. Codeine Sulfate (codeine)." Hikma USA (formerly West-Ward Pharmaceutical Corporation)
View all 14 references

Switch to consumer interaction data

Drug and food interactions

Major

adagrasib food

Applies to: adagrasib

ADJUST DOSING INTERVAL: Adagrasib can cause concentration-dependent, prolongation of the QT interval. Theoretically, coadministration with grapefruit juice before adagrasib has reached steady-state may significantly increase the plasma concentrations of adagrasib, which is primarily metabolized by CYP450 3A4. The proposed mechanism is inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall by certain compounds present in grapefruit. Inhibition of hepatic CYP450 3A4 may also contribute. The interaction has not been studied with grapefruit juice but has been reported for the potent CYP450 3A4 inhibitor, itraconazole. In a clinical drug interaction study, adagrasib peak plasma concentration (Cmax) and systemic exposure (AUC) were increased by 2.4-fold and 4-fold, respectively following concomitant use of a single dose of adagrasib (200 mg) with itraconazole. No clinically significant differences in the pharmacokinetics of adagrasib at steady state were predicted when used concomitantly with itraconazole. In general, the effect of grapefruit juice is concentration-, dose- and preparation-dependent, and can vary widely among brands. Certain preparations of grapefruit juice (e.g., high dose, double strength) have sometimes demonstrated potent inhibition of CYP450 3A4, while other preparations (e.g., low dose, single strength) have typically demonstrated moderate inhibition. Increased exposure to adagrasib may increase the risk of adverse effects such as QT prolongation, diarrhea, fatigue, musculoskeletal pain, hepatotoxicity, and renal impairment.

Adagrasib pharmacokinetics were not significantly affected when administered with a high-fat meal.

MANAGEMENT: Although clinical data are lacking, it may be advisable to avoid the consumption of grapefruit or grapefruit juice until adagrasib concentrations have reached steady state (after approximately 8 days). Patients should be advised to seek prompt medical attention if they experience symptoms that could indicate the occurrence of torsade de pointes such as dizziness, lightheadedness, fainting, palpitation, irregular heart rhythm, shortness of breath, or syncope. Adagrasib may be administered with or without food.

References

  1. (2022) "Product Information. Krazati (adagrasib)." Mirati Therapeutics, Inc.

Switch to consumer interaction data

Moderate

codeine food

Applies to: codeine / phenylephrine / promethazine

GENERALLY AVOID: Ethanol may potentiate the central nervous system (CNS) depressant effects of opioid analgesics. Concomitant use may result in additive CNS depression and impairment of judgment, thinking, and psychomotor skills. In more severe cases, hypotension, respiratory depression, profound sedation, coma, or even death may occur.

MANAGEMENT: Concomitant use of opioid analgesics with ethanol should be avoided.

References

  1. Linnoila M, Hakkinen S (1974) "Effects of diazepam and codeine, alone and in combination with alcohol, on simulated driving." Clin Pharmacol Ther, 15, p. 368-73
  2. Sturner WQ, Garriott JC (1973) "Deaths involving propoxyphene: a study of 41 cases over a two-year period." JAMA, 223, p. 1125-30
  3. Girre C, Hirschhorn M, Bertaux L, et al. (1991) "Enhancement of propoxyphene bioavailability by ethanol: relation to psychomotor and cognitive function in healthy volunteers." Eur J Clin Pharmacol, 41, p. 147-52
  4. Levine B, Saady J, Fierro M, Valentour J (1984) "A hydromorphone and ethanol fatality." J Forensic Sci, 29, p. 655-9
  5. Sellers EM, Hamilton CA, Kaplan HL, Degani NC, Foltz RL (1985) "Pharmacokinetic interaction of propoxyphene with ethanol." Br J Clin Pharmacol, 19, p. 398-401
  6. Carson DJ (1977) "Fatal dextropropoxyphene poisoning in Northern Ireland. Review of 30 cases." Lancet, 1, p. 894-7
  7. Rosser WW (1980) "The interaction of propoxyphene with other drugs." Can Med Assoc J, 122, p. 149-50
  8. Edwards C, Gard PR, Handley SL, Hunter M, Whittington RM (1982) "Distalgesic and ethanol-impaired function." Lancet, 2, p. 384
  9. Kiplinger GF, Sokol G, Rodda BE (1974) "Effect of combined alcohol and propoxyphene on human performance." Arch Int Pharmacodyn Ther, 212, p. 175-80
View all 9 references

Switch to consumer interaction data

Moderate

promethazine food

Applies to: codeine / phenylephrine / promethazine

GENERALLY AVOID: Concurrent use of ethanol and phenothiazines may result in additive CNS depression and psychomotor impairment. Also, ethanol may precipitate dystonic reactions in patients who are taking phenothiazines. The two drugs probably act on different sites in the brain, although the exact mechanism of the interaction is not known.

MANAGEMENT: Patients should be advised to avoid alcohol during phenothiazine therapy.

References

  1. Lutz EG (1976) "Neuroleptic-induced akathisia and dystonia triggered by alcohol." JAMA, 236, p. 2422-3
  2. Freed E (1981) "Alcohol-triggered-neuroleptic-induced tremor, rigidity and dystonia." Med J Aust, 2, p. 44-5

Switch to consumer interaction data

Moderate

phenylephrine food

Applies to: codeine / phenylephrine / promethazine

MONITOR: Coadministration of two or more sympathomimetic agents may increase the risk of adverse effects such as nervousness, irritability, and increased heart rate. Central nervous system (CNS) stimulants, particularly amphetamines, can potentiate the adrenergic response to vasopressors and other sympathomimetic agents. Additive increases in blood pressure and heart rate may occur due to enhanced peripheral sympathetic activity.

MANAGEMENT: Caution is advised if two or more sympathomimetic agents are coadministered. Pulse and blood pressure should be closely monitored.

References

  1. Rosenblatt JE, Lake CR, van Kammen DP, Ziegler MG, Bunney WE Jr (1979) "Interactions of amphetamine, pimozide, and lithium on plasma norepineophrine and dopamine-beta-hydroxylase in schizophrenic patients." Psychiatry Res, 1, p. 45-52
  2. Cavanaugh JH, Griffith JD, Oates JA (1970) "Effect of amphetamine on the pressor response to tyramine: formation of p-hydroxynorephedrine from amphetamine in man." Clin Pharmacol Ther, 11, p. 656
  3. (2001) "Product Information. Adderall (amphetamine-dextroamphetamine)." Shire Richwood Pharmaceutical Company Inc
  4. (2001) "Product Information. Tenuate (diethylpropion)." Aventis Pharmaceuticals
  5. (2001) "Product Information. Sanorex (mazindol)." Novartis Pharmaceuticals
  6. (2001) "Product Information. Focalin (dexmethylphenidate)." Mikart Inc
  7. (2002) "Product Information. Strattera (atomoxetine)." Lilly, Eli and Company
View all 7 references

Switch to consumer interaction data

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Loading...
QR code containing a link to this page

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.