Skip to main content

Drug Interactions between acetaminophen / magnesium salicylate / pamabrom and trandolapril / verapamil

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Moderate

verapamil magnesium salicylate

Applies to: trandolapril / verapamil and acetaminophen / magnesium salicylate / pamabrom

MONITOR: Limited data indicate that some cyclooxygenase inhibitors may attenuate the antihypertensive effects of some calcium channel blockers. The mechanism appears to be related to an alteration of vascular tone, which is dependent on prostacyclins and other vasodilatory prostanoids. When a nonsteroidal anti-inflammatory drug (NSAID) is added to the regimen of a patient who is already taking a calcium channel blocker, increased blood pressure may result. Also, the clinician should be aware that the risk of hypotension is increased when NSAIDs are withdrawn from the regimen.

MANAGEMENT: Monitoring for altered blood pressure control is recommended.

References

  1. Ring ME, Corrigan JJ, Fenster PE "Effects of oral diltiazem on platelet function: alone and in combination with "low dose" aspirin." Thromb Res 44 (1986): 391-400
  2. Altman R, Scazziota A, Dujovne C "Diltiazem potentiates the inhibitory effect of aspirin on platelet aggregation." Clin Pharmacol Ther 44 (1988): 320-5
  3. Cremer KF, Pieper JA, Joyal M, Mehta J "Effects of diltiazem, dipyridamole, and their combination on hemostasis." Clin Pharmacol Ther 36 (1984): 641-4
  4. Minuz P, Pancera P, Ribul M, et al. "Amlodipine and haemodynamic effects of cyclo-oxygenase inhibition." Br J Clin Pharmacol 39 (1995): 45-50
  5. Houston MC, Weir M, Gray J, et al. "The effects of nonsteroidal anti-inflammatory drugs on blood pressures of patients with hypertension controlled by verapamil." Arch Intern Med 155 (1995): 1049-54
  6. Deleeuw PW "Nonsteroidal anti-inflammatory drugs and hypertension: the risks in perspective." Drugs 51 (1996): 179-87
  7. "Product Information. DurAct (bromfenac)." Wyeth-Ayerst Laboratories PROD
  8. "Product Information. Arthrotec (diclofenac-misoprostol)." Searle PROD (2001):
  9. Zanchetti A, Hansson L, Leonetti G, et al. "Low-dose aspirin does not interfere with the blood pressure-lowering effects of antihypertensive therapy." J Hypertens 20 (2002): 1015-1022
View all 9 references

Switch to consumer interaction data

Moderate

magnesium salicylate trandolapril

Applies to: acetaminophen / magnesium salicylate / pamabrom and trandolapril / verapamil

MONITOR: Nonsteroidal anti-inflammatory drugs (NSAIDs) may attenuate the antihypertensive effects of ACE inhibitors. The proposed mechanism is NSAID-induced inhibition of renal prostaglandin synthesis, which results in unopposed pressor activity producing hypertension. In addition, NSAIDs can cause fluid retention, which also affects blood pressure. Some NSAIDs may also alter the pharmacokinetics of certain ACE inhibitors. For example, oxaprozin has been shown to reduce the systemic exposure (AUC) of enalapril and its active metabolite, enalaprilat.

MONITOR: Concomitant use of NSAIDs and ACE inhibitors may cause deterioration in renal function, particularly in patients who are elderly or volume-depleted (including those on diuretic therapy) or have compromised renal function. Acute renal failure may occur, although effects are usually reversible. Chronic use of NSAIDs alone may be associated with renal toxicities, including elevations in serum creatinine and BUN, tubular necrosis, glomerulitis, renal papillary necrosis, acute interstitial nephritis, nephrotic syndrome, and renal failure. Additionally, in patients with prerenal conditions whose renal perfusion may be dependent on the function of prostaglandins, NSAIDs may precipitate overt renal decompensation via a dose-related inhibition of prostaglandin synthesis. ACE inhibitors can further worsen renal function by blocking the effect of angiotensin II-mediated efferent arteriolar vasoconstriction, thereby decreasing glomerular filtration.

MANAGEMENT: Patients receiving ACE inhibitors who require prolonged (greater than 1 week) concomitant therapy with an NSAID should have blood pressure monitored more closely following initiation, discontinuation, or change of dosage of the NSAID. Renal function should also be evaluated periodically during prolonged coadministration. The interaction is not expected to occur with low doses (e.g., low-dose aspirin) or intermittent short-term administration of NSAIDs.

References

  1. Moore TJ, Crantz FR, Hollenberg NK "Contribution of prostaglandins to the antihypertensive action of captopril in essential hypertension." Hypertension 3 (1981): 168-73
  2. Radack KL, Deck CC, Bloomfield SS "Ibuprofen interferes with the efficacy of antihypertensive drugs: a randomized, double-blind, placebo-controlled trial of ibuprofen compared with acetaminophen." Ann Intern Med 107 (1987): 628-35
  3. Silberbauer K, Stanek B, Templ H "Acute hypotensive effect of captopril in man modified by prostaglandin synthesis inhibition." Br J Clin Pharmacol 14 (1982): s87-93
  4. Ahmad S "Indomethacin-enalapril interaction: an alert." South Med J 84 (1991): 411-2
  5. Allon M, Pasque CB, Rodriguez M "Interaction of captopril and ibuprofen on glomerular and tubular function in humans." Am J Physiol 259 (1990): f233-8
  6. Seto S, Aoi W, Iwami K, et al. "Effect of propranolol and indomethacin on the depressor action of captopril in patients with essential hypertension." Clin Exp Hypertens 9 (1987): 623-7
  7. "Product Information. Toradol (ketorolac)." Roche Laboratories PROD (2002):
  8. Abdel-Haq B, Magagna A, Favilla S, Salvetti A "Hemodynamic and humoral interactions between perindopril and indomethacin in essential hypertensive subjects." J Cardiovasc Pharmacol 18 (1991): s33-6
  9. Morgan T, Anderson A "Interaction of indomethacin with felodipine and enalapril." J Hypertens 11 (1993): S338-9
  10. "Product Information. Daypro (oxaprozin)." Searle PROD (2001):
  11. Townend JN, Doran J, Lote CJ, Davies MK "Peripheral haemodynamic effects of inhibition of prostaglandin synthesis in congestive heart failure and interactions with captopril." Br Heart J 73 (1995): 434-41
  12. Polonia J, Boaventura I, Gama G, Camoes I, Bernardo F, Andrade P, Nunes JP, Brandao F, Cerqueiragomes M "Influence of non-steroidal anti-inflammatory drugs on renal function and 24h ambulatory blood pressure-reducing effects of enalapril and nifedipine gastrointestinal therapeutic system in hypertensive patients." J Hypertens 13 (1995): 925-31
  13. "Product Information. Celebrex (celecoxib)." Searle PROD (2001):
View all 13 references

Switch to consumer interaction data

Moderate

pamabrom trandolapril

Applies to: acetaminophen / magnesium salicylate / pamabrom and trandolapril / verapamil

MONITOR: Although they are frequently combined in clinical practice, diuretics and angiotensin converting enzyme (ACE) inhibitors may have additive effects. Coadministration makes hypotension and hypovolemia more likely than does either drug alone. Some ACE inhibitors may attenuate the increase in the urinary excretion of sodium caused by some loop diuretics. Some patients on diuretics, especially those on dialysis or a dietary salt restriction, may experience acute hypotension with lightheadedness and dizziness after receiving the first dose of the ACE inhibitor. In addition, ACE inhibitors may cause renal insufficiency or acute renal failure in patients with sodium depletion or renal artery stenosis.

MANAGEMENT: Monitoring of blood pressure, diuresis, electrolytes, and renal function is recommended during coadministration. The possibility of first-dose hypotensive effects may be minimized by initiating therapy with small doses of the ACE inhibitor, or either discontinuing the diuretic temporarily or increasing the salt intake approximately one week prior to initiating an ACE inhibitor. Alternatively, the patient may remain under medical supervision for at least two hours after the first dose of the ACE inhibitor, or until blood pressure has stabilized.

References

  1. Reader C, Peyregne EA, Suarez LD "Amrinone therapy in congestive cardiomyopathy." Am Heart J 105 (1983): 1045
  2. Fujimura A, Shimokawa Y, Ebihara A "Influence of captopril on urinary excretion of furosemide in hypertensive subjects." J Clin Pharmacol 30 (1990): 538-42
  3. Funck-Brentano C, Chatellier G, Alexandre JM "Reversible renal failure after combined treatment with enalapril and furosemide in a patient with congestive heart failure." Br Heart J 55 (1986): 596-8
  4. Weisser K, Schloos J, Jakob S, et al. "The influence of hydrochlorothiazide on the pharmacokinetics of enalapril in elderly patients." Eur J Clin Pharmacol 43 (1992): 173-7
  5. Motwani JG, Fenwick MK, Morton JJ, Struthers AD "Furosemide-induced natriuresis is augmented by ultra-low-dose captopril but not by standard doses of captopril in chronic heart failure." Circulation 86 (1992): 439-45
  6. Burnakis TG, Mioduch HJ "Combined therapy with captopril and potassium supplementation: a potential for hyperkalemia." Arch Intern Med 144 (1984): 2371-2
  7. Murphy BF, Whitworth JA, Kincaid-Smith P "Renal insufficiency with combinations of angiotensin converting enzyme inhibitors and diuretics." Br Med J 288 (1984): 844-5
  8. Thind GS "Renal insufficiency during angiotensin-converting enzyme inhibitor therapy in hypertensive patients with no renal artery stenosis." J Clin Hypertens 1 (1985): 337-43
  9. Radley AS, Fitzpatrick RW "An evaluation of the potential interaction between enalapril and amiloride." J Clin Pharm Ther 12 (1987): 319-23
  10. Champ JD "Case report: azotemia secondary to enalapril and diuretic use and the diagnosis of renovascular hypertension." Am J Med Sci 305 (1993): 25-7
  11. Hume AL, Murphy JL, Lauerman SE "Angiotensin-converting enzyme inhibitor-induced cough." Pharmacotherapy 9 (1989): 88-90
  12. Lee HB, Blaufox MD "Renal functional response to captopril during diuretic therapy." J Nucl Med 33 (1992): 739-43
  13. DeQuattro V "Comparison of benazepril and other antihypertensive agents alone and in combination with the diuretic hydrochlorothiazide." Clin Cardiol 14 (1991): iv28-32;
  14. "Product Information. Vasotec (enalapril)." Merck & Co., Inc PROD (2002):
  15. McLay JS, McMurray JJ, Bridges AB, Fraser CG, Struthers AD "Acute effects of captopril on the renal actions of furosemide in patients with chronic heart failure." Am Heart J 126 (1993): 879-86
  16. Sudoh T, Fujimura A, Shiga T, et al. "Influence of lisinopril on urinary electrolytes excretion after furosemide in healthy subjects." J Clin Pharmacol 33 (1993): 640-3
  17. Lederle RM "Captopril and hydrochlorothiazide in the fixed combination multicenter trial." J Cardiovasc Pharmacol 7 (1985): S63-9
  18. "Product Information. Aceon (perindopril)." Solvay Pharmaceuticals Inc PROD (2001):
  19. Good JM, Brady AJ, Noormohamed FH, Oakley CM, Cleland JG "Effect of intense angiotensin II suppression on the diuretic response to furosemide during chronic ACE inhibition." Circulation 90 (1994): 220-4
  20. "Product Information. Capoten (captopril)." Bristol-Myers Squibb PROD (2001):
  21. "Product Information. Lexxel (enalapril-felodipine)." Astra-Zeneca Pharmaceuticals PROD (2001):
  22. "Product Information. Zestril (lisinopril)." Astra-Zeneca Pharmaceuticals PROD
  23. Cerner Multum, Inc. "Australian Product Information." O 0
View all 23 references

Switch to consumer interaction data

Minor

verapamil trandolapril

Applies to: trandolapril / verapamil and trandolapril / verapamil

Calcium channel blockers and angiotensin converting enzyme (ACE) inhibitors may have additive hypotensive effects. While these drugs are often safely used together, careful monitoring of the systemic blood pressure is recommended during coadministration, especially during the first one to three weeks of therapy.

References

  1. Kaplan NM "Amlodipine in the treatment of hypertension." Postgrad Med J 67 Suppl 5 (1991): s15-9
  2. DeQuattro V "Comparison of benazepril and other antihypertensive agents alone and in combination with the diuretic hydrochlorothiazide." Clin Cardiol 14 (1991): iv28-32;
  3. Sun JX, Cipriano A, Chan K, John VA "Pharmacokinetic interaction study between benazepril and amlodipine in healthy subjects." Eur J Clin Pharmacol 47 (1994): 285-9
  4. Di Somma S, et al. "Antihypertensive effects of verapamil, captopril and their combination at rest and during dynamic exercise." Arzneimittelforschung 42 (1992): 103
View all 4 references

Switch to consumer interaction data

Drug and food interactions

Major

acetaminophen food

Applies to: acetaminophen / magnesium salicylate / pamabrom

GENERALLY AVOID: Chronic, excessive consumption of alcohol may increase the risk of acetaminophen-induced hepatotoxicity, which has included rare cases of fatal hepatitis and frank hepatic failure requiring liver transplantation. The proposed mechanism is induction of hepatic microsomal enzymes during chronic alcohol use, which may result in accelerated metabolism of acetaminophen and increased production of potentially hepatotoxic metabolites.

MANAGEMENT: In general, chronic alcoholics should avoid regular or excessive use of acetaminophen. Alternative analgesic/antipyretic therapy may be appropriate in patients who consume three or more alcoholic drinks per day. However, if acetaminophen is used, these patients should be cautioned not to exceed the recommended dosage (maximum 4 g/day in adults and children 12 years of age or older).

References

  1. Kaysen GA, Pond SM, Roper MH, Menke DJ, Marrama MA "Combined hepatic and renal injury in alcoholics during therapeutic use of acetaminophen." Arch Intern Med 145 (1985): 2019-23
  2. O'Dell JR, Zetterman RK, Burnett DA "Centrilobular hepatic fibrosis following acetaminophen-induced hepatic necrosis in an alcoholic." JAMA 255 (1986): 2636-7
  3. Seeff LB, Cuccherini BA, Zimmerman HJ, Adler E, Benjamin SB "Acetaminophen hepatotoxicity in alcoholics." Ann Intern Med 104 (1986): 399-404
  4. Thummel KE, Slattery JT, Nelson SD "Mechanism by which ethanol diminishes the hepatotoxicity of acetaminophen." J Pharmacol Exp Ther 245 (1988): 129-36
  5. McClain CJ, Kromhout JP, Peterson FJ, Holtzman JL "Potentiation of acetaminophen hepatotoxicity by alcohol." JAMA 244 (1980): 251-3
  6. Kartsonis A, Reddy KR, Schiff ER "Alcohol, acetaminophen, and hepatic necrosis." Ann Intern Med 105 (1986): 138-9
  7. Prescott LF, Critchley JA "Drug interactions affecting analgesic toxicity." Am J Med 75 (1983): 113-6
  8. "Product Information. Tylenol (acetaminophen)." McNeil Pharmaceutical PROD (2002):
  9. Whitcomb DC, Block GD "Association of acetaminopphen hepatotoxicity with fasting and ethanol use." JAMA 272 (1994): 1845-50
  10. Bonkovsky HL "Acetaminophen hepatotoxicity, fasting, and ethanol." JAMA 274 (1995): 301
  11. Nelson EB, Temple AR "Acetaminophen hepatotoxicity, fasting, and ethanol." JAMA 274 (1995): 301
  12. Zimmerman HJ, Maddrey WC "Acetaminophen (paracetamol) hepatotoxicity with regular intake of alcohol: analysis of instances of therapeutic misadventure." Hepatology 22 (1995): 767-73
View all 12 references

Switch to consumer interaction data

Moderate

verapamil food

Applies to: trandolapril / verapamil

GENERALLY AVOID: Consumption of large quantities of grapefruit juice may be associated with significantly increased plasma concentrations of oral verapamil. The mechanism is inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall by certain compounds present in grapefruits. One study reported no significant effect of a single administration of grapefruit juice on the pharmacokinetics of verapamil in ten hypertensive patients receiving chronic therapy. In another study conducted in nine healthy male volunteers, administration of 120 mg oral verapamil twice daily for 3 days following pretreatment with 200 mL grapefruit juice twice daily for 5 days resulted in a 57% increase in S-verapamil peak plasma concentration (Cmax), a 36% increase in S-verapamil systemic exposure (AUC), a 40% increase in R-verapamil Cmax, and a 28% increase in R-verapamil AUC compared to administration following orange juice. Elimination half-life and renal clearance of both S- and R-verapamil were not affected by grapefruit juice, and there were no significant effects on blood pressure, heart rate, or PR interval. A third study reported a 1.63-fold increase in Cmax and a 1.45-fold increase in AUC of (R,S)-verapamil in 24 young, healthy volunteers given verapamil sustained-release 120 mg twice daily for 7 days with 250 mL grapefruit juice four times daily on days 5 through 7. Two subjects developed PR interval prolongation of more than 350 ms during grapefruit juice coadministration. A high degree of interindividual variability has been observed in these studies. The interaction was also suspected in a case report of a 42-year-old woman who developed complete heart block, hypotension, hypoxic respiratory failure, severe anion gap metabolic acidosis, and hyperglycemia following accidental ingestion of three verapamil sustained-release 120 mg tablets over a span of six hours. The patient's past medical history was remarkable only for migraine headaches, for which she was receiving several medications including verapamil. Prior to admission, the patient had a 2-week history of poorly controlled migraine, and the six hours preceding hospitalization she suffered from worsening headache and palpitations progressing to altered sensorium. An extensive workup revealed elevated verapamil and norverapamil levels more than 4.5 times above the upper therapeutic limits. These levels also far exceeded those reported in the medical literature for patients taking verapamil 120 mg every 6 hours, or 480 mg in a 24-hour period. The patient recovered after receiving ventilator and vasopressor support. Upon questioning, it was discovered that the patient had been drinking large amounts of grapefruit juice (3 to 4 liters total) the week preceding her admission due to nausea. No other sources or contributing factors could be found for the verapamil toxicity.

MANAGEMENT: Patients treated with oral verapamil should avoid the consumption of large amounts of grapefruit or grapefruit juice to prevent any undue fluctuations in serum drug levels. Patients should be advised to seek medical attention if they experience edema or swelling of the lower extremities; sudden, unexplained weight gain; difficulty breathing; chest pain or tightness; or hypotension as indicated by dizziness, fainting, or orthostasis.

References

  1. McAllister RG, Jr "Clinical pharmacology of slow channel blocking agents." Prog Cardiovasc Dis 25 (1982): 83-102
  2. "Product Information. Covera-HS (verapamil)." Searle PROD (2001):
  3. Zaidenstein R, Dishi V, Gips M, Soback S, Cohen N, Weissgarten J, Blatt A, Golik A "The effect of grapefruit juice on the pharmacokinetics of orally administered verapamil." Eur J Clin Pharmacol 54 (1998): 337-40
  4. Ho PC, Ghose K, Saville D, Wanwimolruk S "Effect of grapefruit juice on pharmacokinetics and pharmacodynamics of verapamil enantiomers in healthy volunteers." Eur J Clin Pharmacol 56 (2000): 693-8
  5. Fuhr U, Muller-Peltzer H, Kern R, et al. "Effects of grapefruit juice and smoking on verapamil concentrations in steady state." Eur J Clin Pharmacol 58 (2002): 45-53
  6. Bailey DG, Dresser GK "Natural products and adverse drug interactions." Can Med Assoc J 170 (2004): 1531-2
  7. Bailey DG, Malcolm J, Arnold O, Spence JD "Grapefruit juice-drug interactions. 1998." Br J Clin Pharmacol 58 (2004): S831-40; discussion S841-3
  8. Arayne MS, Sultana N, Bibi Z "Review: grape fruit juice - drug interactions." Pak J Pharm Sci 18 (2005): 45-57
  9. Pillai U, Muzaffar J, Sandeep S, Yancey A "Grapefruit juice and verapamil: a toxic cocktail." South Med J 102 (2009): 308-9
View all 9 references

Switch to consumer interaction data

Moderate

trandolapril food

Applies to: trandolapril / verapamil

GENERALLY AVOID: Moderate-to-high dietary intake of potassium can cause hyperkalemia in some patients who are using angiotensin converting enzyme (ACE) inhibitors. In some cases, affected patients were using a potassium-rich salt substitute. ACE inhibitors can promote hyperkalemia through inhibition of the renin-aldosterone-angiotensin (RAA) system.

MANAGEMENT: It is recommended that patients who are taking ACE inhibitors be advised to avoid moderately high or high potassium dietary intake. Particular attention should be paid to the potassium content of salt substitutes.

References

  1. "Product Information. Vasotec (enalapril)." Merck & Co., Inc PROD (2002):
  2. Good CB, McDermott L "Diet and serum potassium in patients on ACE inhibitors." JAMA 274 (1995): 538
  3. Ray K, Dorman S, Watson R "Severe hyperkalaemia due to the concomitant use of salt substitutes and ACE inhibitors in hypertension: a potentially life threatening interaction." J Hum Hypertens 13 (1999): 717-20

Switch to consumer interaction data

Moderate

verapamil food

Applies to: trandolapril / verapamil

GENERALLY AVOID: Verapamil may increase the blood concentrations and intoxicating effects of ethanol. The exact mechanism of interaction is unknown but may involve verapamil inhibition of ethanol metabolism. In 10 healthy, young volunteers, verapamil (80 mg orally every 8 hours for 6 days) increased the mean peak blood concentration (Cmax) and the 12-hour area under the concentration-time curve (AUC) of ethanol (0.8 g/kg single oral dose) by 17% and 30%, respectively, compared to placebo. Verapamil AUCs were positively correlated to increased ethanol blood AUC values. Subjectively (i.e. each subject's perception of intoxication as measured on a visual analog scale), verapamil also significantly increased the area under the ethanol effect versus time curve but did not change the peak effect or time to peak effect.

MANAGEMENT: Patients treated with verapamil should be counseled to avoid alcohol consumption.

References

  1. Bauer LA, Schumock G, Horn J, Opheim K "Verapamil inhibits ethanol elimination and prolongs the perception of intoxication." Clin Pharmacol Ther 52 (1992): 6-10
  2. "Product Information. Isoptin (verapamil)." Knoll Pharmaceutical Company PROD (2001):

Switch to consumer interaction data

Moderate

magnesium salicylate food

Applies to: acetaminophen / magnesium salicylate / pamabrom

GENERALLY AVOID: The concurrent use of aspirin or nonsteroidal anti-inflammatory drugs (NSAIDs) and ethanol may lead to gastrointestinal (GI) blood loss. The mechanism may be due to a combined local effect as well as inhibition of prostaglandins leading to decreased integrity of the GI lining.

MANAGEMENT: Patients should be counseled on this potential interaction and advised to refrain from alcohol consumption while taking aspirin or NSAIDs.

References

  1. "Product Information. Motrin (ibuprofen)." Pharmacia and Upjohn PROD (2002):

Switch to consumer interaction data

Moderate

verapamil food

Applies to: trandolapril / verapamil

MONITOR: Calcium-containing products may decrease the effectiveness of calcium channel blockers by saturating calcium channels with calcium. Calcium chloride has been used to manage acute severe verapamil toxicity.

MANAGEMENT: Management consists of monitoring the effectiveness of calcium channel blocker therapy during coadministration with calcium products.

References

  1. Henry M, Kay MM, Viccellio P "Cardiogenic shock associated with calcium-channel and beta blockers: reversal with intravenous calcium chloride." Am J Emerg Med 3 (1985): 334-6
  2. Moller IW "Cardiac arrest following intravenous verapamil combined with halothane anaesthesia." Br J Anaesth 59 (1987): 522-6
  3. Oszko MA, Klutman NE "Use of calcium salts during cardiopulmonary resuscitation for reversing verapamil-associated hypotension." Clin Pharm 6 (1987): 448-9
  4. Schoen MD, Parker RB, Hoon TJ, et al. "Evaluation of the pharmacokinetics and electrocardiographic effects of intravenous verapamil with intravenous calcium chloride pretreatment in normal subjects." Am J Cardiol 67 (1991): 300-4
  5. O'Quinn SV, Wohns DH, Clarke S, Koch G, Patterson JH, Adams KF "Influence of calcium on the hemodynamic and anti-ischemic effects of nifedipine observed during treadmill exercise testing." Pharmacotherapy 10 (1990): 247
  6. Woie L, Storstein L "Successful treatment of suicidal verapamil poisoning with calcium gluconate." Eur Heart J 2 (1981): 239-42
  7. Morris DL, Goldschlager N "Calcium infusion for reversal of adverse effects of intravenous verapamil." JAMA 249 (1983): 3212-3
  8. Guadagnino V, Greengart A, Hollander G, Solar M, Shani J, Lichstein E "Treatment of severe left ventricular dysfunction with calcium chloride in patients receiving verapamil." J Clin Pharmacol 27 (1987): 407-9
  9. Luscher TF, Noll G, Sturmer T, Huser B, Wenk M "Calcium gluconate in severe verapamil intoxication." N Engl J Med 330 (1994): 718-20
  10. Bar-Or D, Gasiel Y "Calcium and calciferol antagonise effect of verapamil in atrial fibrillation." Br Med J (Clin Res Ed) 282 (1981): 1585-6
  11. Lipman J, Jardine I, Roos C, Dreosti L "Intravenous calcium chloride as an antidote to verapamil-induced hypotension." Intensive Care Med 8 (1982): 55-7
  12. McMillan R "Management of acute severe verapamil intoxication." J Emerg Med 6 (1988): 193-6
  13. Perkins CM "Serious verapamil poisoning: treatment with intravenous calcium gluconate." Br Med J 2 (1978): 1127
  14. Moroni F, Mannaioni PF, Dolara A, Ciaccheri M "Calcium gluconate and hypertonic sodium chloride in a case of massive verapamil poisoning." Clin Toxicol 17 (1980): 395-400
View all 14 references

Switch to consumer interaction data

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Loading...
QR code containing a link to this page

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.