Drug Interactions between acetaminophen / codeine / guaifenesin / phenylephrine and nafcillin
This report displays the potential drug interactions for the following 2 drugs:
- acetaminophen/codeine/guaifenesin/phenylephrine
- nafcillin
Interactions between your drugs
codeine nafcillin
Applies to: acetaminophen / codeine / guaifenesin / phenylephrine and nafcillin
MONITOR: Coadministration of codeine with potent or moderate CYP450 3A4 inducers may result in lower codeine plasma concentrations, higher levels of the inactive metabolite norcodeine, and less metabolism via CYP450 2D6, resulting in lower morphine levels. This interaction may lead to reduced codeine efficacy and potentially initiate the onset of withdrawal symptoms in patients who are physically dependent. In addition, patients may be at an increased risk of CNS and/or respiratory-depressant effects from increased levels of codeine once concomitant therapy with the CYP450 3A4 inducer is ceased. This is particularly worrisome if the CYP450 3A4 inducer also possesses CNS- and/or respiratory-depressant effects. This interaction has also been reported with dihydrocodeine.
MANAGEMENT: The potential loss of efficacy of codeine or dihydrocodeine and onset of opioid withdrawal symptoms should be considered when used in combination with a potent or moderate CYP450 3A4 inducer. Alternative agents with no or minimal CYP450 3A4 induction potential are recommended whenever possible. Some manufacturers of products containing codeine advise against the concomitant use of codeine with CYP450 3A4 inducers. If concomitant use is considered necessary, caution and close clinical and laboratory monitoring are recommended. Dosage adjustments may also be required whenever a CYP450 3A4 inducer is added to or withdrawn from therapy. Following discontinuation of a CYP450 3A4 inducer, patients should be monitored for potentially excessive or prolonged CNS and respiratory depression.
References (7)
- Cerner Multum, Inc. "UK Summary of Product Characteristics."
- Cerner Multum, Inc. "Australian Product Information."
- (2015) "Product Information. Codeine Sulfate (codeine)." Lannett Company Inc
- (2015) "Product Information. Acetaminophen-Codeine Phosphate (acetaminophen-codeine)." Qualitest Products Inc
- Cerner Multum, Inc. (2015) "Canadian Product Information."
- (2016) "Product Information. Tuzistra XR (chlorpheniramine-codeine)." Vernalis Pharmaceuticals Inc
- Caraco Y, Sheller J, Wood AJ (1997) "Pharmacogenetic determinants of codeine induction by rifampin: the impact on codeine's respiratory, psychomotor and miotic effects." J Pharmacol Exp Ther, 281, p. 330-6
Drug and food interactions
acetaminophen food
Applies to: acetaminophen / codeine / guaifenesin / phenylephrine
GENERALLY AVOID: Chronic, excessive consumption of alcohol may increase the risk of acetaminophen-induced hepatotoxicity, which has included rare cases of fatal hepatitis and frank hepatic failure requiring liver transplantation. The proposed mechanism is induction of hepatic microsomal enzymes during chronic alcohol use, which may result in accelerated metabolism of acetaminophen and increased production of potentially hepatotoxic metabolites.
MANAGEMENT: In general, chronic alcoholics should avoid regular or excessive use of acetaminophen. Alternative analgesic/antipyretic therapy may be appropriate in patients who consume three or more alcoholic drinks per day. However, if acetaminophen is used, these patients should be cautioned not to exceed the recommended dosage (maximum 4 g/day in adults and children 12 years of age or older).
References (12)
- Kaysen GA, Pond SM, Roper MH, Menke DJ, Marrama MA (1985) "Combined hepatic and renal injury in alcoholics during therapeutic use of acetaminophen." Arch Intern Med, 145, p. 2019-23
- O'Dell JR, Zetterman RK, Burnett DA (1986) "Centrilobular hepatic fibrosis following acetaminophen-induced hepatic necrosis in an alcoholic." JAMA, 255, p. 2636-7
- Seeff LB, Cuccherini BA, Zimmerman HJ, Adler E, Benjamin SB (1986) "Acetaminophen hepatotoxicity in alcoholics." Ann Intern Med, 104, p. 399-404
- Thummel KE, Slattery JT, Nelson SD (1988) "Mechanism by which ethanol diminishes the hepatotoxicity of acetaminophen." J Pharmacol Exp Ther, 245, p. 129-36
- McClain CJ, Kromhout JP, Peterson FJ, Holtzman JL (1980) "Potentiation of acetaminophen hepatotoxicity by alcohol." JAMA, 244, p. 251-3
- Kartsonis A, Reddy KR, Schiff ER (1986) "Alcohol, acetaminophen, and hepatic necrosis." Ann Intern Med, 105, p. 138-9
- Prescott LF, Critchley JA (1983) "Drug interactions affecting analgesic toxicity." Am J Med, 75, p. 113-6
- (2002) "Product Information. Tylenol (acetaminophen)." McNeil Pharmaceutical
- Whitcomb DC, Block GD (1994) "Association of acetaminopphen hepatotoxicity with fasting and ethanol use." JAMA, 272, p. 1845-50
- Bonkovsky HL (1995) "Acetaminophen hepatotoxicity, fasting, and ethanol." JAMA, 274, p. 301
- Nelson EB, Temple AR (1995) "Acetaminophen hepatotoxicity, fasting, and ethanol." JAMA, 274, p. 301
- Zimmerman HJ, Maddrey WC (1995) "Acetaminophen (paracetamol) hepatotoxicity with regular intake of alcohol: analysis of instances of therapeutic misadventure." Hepatology, 22, p. 767-73
nafcillin food
Applies to: nafcillin
ADJUST DOSING INTERVAL: Certain penicillins may exhibit reduced gastrointestinal absorption in the presence of food. The therapeutic effect of the antimicrobial may be reduced.
MANAGEMENT: The interacting penicillin should be administered one hour before or two hours after meals. Penicillin V and amoxicillin are not affected by food and may be given without regard to meals.
References (6)
- Neu HC (1974) "Antimicrobial activity and human pharmacology of amoxicillin." J Infect Dis, 129, s123-31
- Welling PG, Huang H, Koch PA, Madsen PO (1977) "Bioavailability of ampicillin and amoxicillin in fasted and nonfasted subjects." J Pharm Sci, 66, p. 549-52
- McCarthy CG, Finland M (1960) "Absorption and excretion of four penicillins." N Engl J Med, 263, p. 315-26
- Cronk GA, Wheatley WB, Fellers GF, Albright H (1960) "The relationship of food intake to the absorption of potassium alpha-phenoxyethyl penicillin and potassium phenoxymethyl penicillin from the gastrointestinal tract." Am J Med Sci, 240, p. 219-25
- Klein JO, Sabath LD, Finland M (1963) "Laboratory studies on oxacillin. I: in vitro activity against staphylococci and some other bacterial pathogens. II: absorption and urinary excretion in normal young." Am J Med Sci, 245, p. 399-411
- Neuvonen PJ, Elonen E, Pentikainen PJ (1977) "Comparative effect of food on absorption of ampicillin and pivampicillin." J Int Med Res, 5, p. 71-6
codeine food
Applies to: acetaminophen / codeine / guaifenesin / phenylephrine
GENERALLY AVOID: Ethanol may potentiate the central nervous system (CNS) depressant effects of opioid analgesics. Concomitant use may result in additive CNS depression and impairment of judgment, thinking, and psychomotor skills. In more severe cases, hypotension, respiratory depression, profound sedation, coma, or even death may occur.
MANAGEMENT: Concomitant use of opioid analgesics with ethanol should be avoided.
References (9)
- Linnoila M, Hakkinen S (1974) "Effects of diazepam and codeine, alone and in combination with alcohol, on simulated driving." Clin Pharmacol Ther, 15, p. 368-73
- Sturner WQ, Garriott JC (1973) "Deaths involving propoxyphene: a study of 41 cases over a two-year period." JAMA, 223, p. 1125-30
- Girre C, Hirschhorn M, Bertaux L, et al. (1991) "Enhancement of propoxyphene bioavailability by ethanol: relation to psychomotor and cognitive function in healthy volunteers." Eur J Clin Pharmacol, 41, p. 147-52
- Levine B, Saady J, Fierro M, Valentour J (1984) "A hydromorphone and ethanol fatality." J Forensic Sci, 29, p. 655-9
- Sellers EM, Hamilton CA, Kaplan HL, Degani NC, Foltz RL (1985) "Pharmacokinetic interaction of propoxyphene with ethanol." Br J Clin Pharmacol, 19, p. 398-401
- Carson DJ (1977) "Fatal dextropropoxyphene poisoning in Northern Ireland. Review of 30 cases." Lancet, 1, p. 894-7
- Rosser WW (1980) "The interaction of propoxyphene with other drugs." Can Med Assoc J, 122, p. 149-50
- Edwards C, Gard PR, Handley SL, Hunter M, Whittington RM (1982) "Distalgesic and ethanol-impaired function." Lancet, 2, p. 384
- Kiplinger GF, Sokol G, Rodda BE (1974) "Effect of combined alcohol and propoxyphene on human performance." Arch Int Pharmacodyn Ther, 212, p. 175-80
phenylephrine food
Applies to: acetaminophen / codeine / guaifenesin / phenylephrine
MONITOR: Coadministration of two or more sympathomimetic agents may increase the risk of adverse effects such as nervousness, irritability, and increased heart rate. Central nervous system (CNS) stimulants, particularly amphetamines, can potentiate the adrenergic response to vasopressors and other sympathomimetic agents. Additive increases in blood pressure and heart rate may occur due to enhanced peripheral sympathetic activity.
MANAGEMENT: Caution is advised if two or more sympathomimetic agents are coadministered. Pulse and blood pressure should be closely monitored.
References (7)
- Rosenblatt JE, Lake CR, van Kammen DP, Ziegler MG, Bunney WE Jr (1979) "Interactions of amphetamine, pimozide, and lithium on plasma norepineophrine and dopamine-beta-hydroxylase in schizophrenic patients." Psychiatry Res, 1, p. 45-52
- Cavanaugh JH, Griffith JD, Oates JA (1970) "Effect of amphetamine on the pressor response to tyramine: formation of p-hydroxynorephedrine from amphetamine in man." Clin Pharmacol Ther, 11, p. 656
- (2001) "Product Information. Adderall (amphetamine-dextroamphetamine)." Shire Richwood Pharmaceutical Company Inc
- (2001) "Product Information. Tenuate (diethylpropion)." Aventis Pharmaceuticals
- (2001) "Product Information. Sanorex (mazindol)." Novartis Pharmaceuticals
- (2001) "Product Information. Focalin (dexmethylphenidate)." Mikart Inc
- (2002) "Product Information. Strattera (atomoxetine)." Lilly, Eli and Company
acetaminophen food
Applies to: acetaminophen / codeine / guaifenesin / phenylephrine
MONITOR: Smoking cessation may lead to elevated plasma concentrations and enhanced pharmacologic effects of drugs that are substrates of CYP450 1A2 (and possibly CYP450 1A1) and/or certain drugs with a narrow therapeutic index (e.g., flecainide, pentazocine). One proposed mechanism is related to the loss of CYP450 1A2 and 1A1 induction by polycyclic aromatic hydrocarbons in tobacco smoke; when smoking cessation agents are initiated and smoking stops, the metabolism of certain drugs may decrease leading to increased plasma concentrations. The mechanism by which smoking cessation affects narrow therapeutic index drugs that are not known substrates of CYP450 1A2 or 1A1 is unknown. The clinical significance of this interaction is unknown as clinical data are lacking.
MANAGEMENT: Until more information is available, caution is advisable if smoking cessation agents are used concomitantly with drugs that are substrates of CYP450 1A2 or 1A1 and/or those with a narrow therapeutic range. Patients receiving smoking cessation agents may require periodic dose adjustments and closer clinical and laboratory monitoring of medications that are substrates of CYP450 1A2 or 1A1.
References (4)
- (2024) "Product Information. Cytisine (cytisinicline)." Consilient Health Ltd
- jeong sh, Newcombe D, sheridan j, Tingle M (2015) "Pharmacokinetics of cytisine, an a4 b2 nicotinic receptor partial agonist, in healthy smokers following a single dose." Drug Test Anal, 7, p. 475-82
- Vaughan DP, Beckett AH, Robbie DS (1976) "The influence of smoking on the intersubject variation in pentazocine elimination." Br J Clin Pharmacol, 3, p. 279-83
- Zevin S, Benowitz NL (1999) "Drug interactions with tobacco smoking: an update" Clin Pharmacokinet, 36, p. 425-38
Therapeutic duplication warnings
No warnings were found for your selected drugs.
Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.
See also
Drug Interaction Classification
Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit. | |
Moderately clinically significant. Usually avoid combinations; use it only under special circumstances. | |
Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan. | |
No interaction information available. |
Further information
Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.
Check Interactions
To view an interaction report containing 4 (or more) medications, please sign in or create an account.
Save Interactions List
Sign in to your account to save this drug interaction list.