Skip to main content

Drug Interactions between AccessPak for HIV PEP Expanded with Kaletra and Urelief Plus

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Moderate

butabarbital ritonavir

Applies to: Urelief Plus (butabarbital / hyoscyamine / phenazopyridine) and AccessPak for HIV PEP Expanded with Kaletra (emtricitabine / lopinavir / ritonavir / tenofovir)

MONITOR: Coadministration with drugs that are inducers of CYP450 3A4 may decrease the plasma concentrations of protease inhibitors (PIs), which are primarily metabolized by the isoenzyme.

MANAGEMENT: Given the risk of reduced viral susceptibility and resistance development associated with subtherapeutic antiretroviral drug levels, protease inhibitors should be used cautiously with agents that induce CYP450 3A4, particularly if only one PI is used in the antiretroviral regimen. Coadministration of atazanavir without ritonavir and carbamazepine, phenobarbital, or phenytoin is not recommended. Antiretroviral response should be monitored more closely whenever a CYP450 3A4 inducer is added to or withdrawn from therapy, and the antiretroviral regimen adjusted as necessary.

References

  1. "Product Information. Invirase (saquinavir)." Roche Laboratories PROD (2001):
  2. "Product Information. Crixivan (indinavir)." Merck & Co., Inc PROD (2001):
  3. "Product Information. Viracept (nelfinavir)." Agouron Pharma Inc PROD (2001):
  4. Brooks J, Daily J, Schwamm L "Protease inhibitors and anticonvulsants." AIDS Clin Care 9 (1997): 87,90
  5. Barry M, Gibbons S, Back D, Mulcahy F "Protease inhibitors in patients with HIV disease. Clinically important pharmacokinetic considerations." Clin Pharmacokinet 32 (1997): 194-209
  6. "Product Information. Agenerase (amprenavir)." Glaxo Wellcome PROD (2001):
  7. Acosta EP, Henry K, Baken L, Page LM, Fletcher CV "Indinavir concentrations and antiviral effect." Pharmacotherapy 19 (1999): 708-12
  8. Sommadossi JP "HIV protease inhibitors: pharmacologic and metabolic distinctions." AIDS 13 (1999): s29-40
  9. Hugen PWH, Burger DM, Brinkman K, terHofstede HJM, Schuurman R, Koopmans PP, Hekster YA "Carbamazepine-indinavir interaction causes antiretroviral therapy failure." Ann Pharmacother 34 (2000): 465-70
  10. Durant J, Clevenbergh P, Garraffo R, Halfon P, Icard S, DelGiudice P, Montagne N, Schapiro JM, Dellamonica P "Importance of protease inhibitor plasma levels in HIV-infected patients treated with genotypic-guided therapy: pharmacological data from the Viradapt Study." Aids 14 (2000): 1333-9
  11. "Product Information. Fortovase (saquinavir)." Roche Laboratories PROD (2001):
  12. "Product Information. Reyataz (atazanavir)." Bristol-Myers Squibb (2003):
  13. "Product Information. Lexiva (fosamprenavir)." GlaxoSmithKline (2003):
  14. Liedtke MD, Lockhart SM, Rathbun RC "Anticonvulsant and antiretroviral interactions." Ann Pharmacother 38 (2004): 482-9
  15. "Product Information. Aptivus (tipranavir)." Boehringer-Ingelheim (2005):
  16. "Product Information. Prezista (darunavir)." Ortho Biotech Inc (2006):
  17. Canadian Pharmacists Association "e-CPS. http://www.pharmacists.ca/function/Subscriptions/ecps.cfm?link=eCPS_quikLink" (2006):
View all 17 references

Switch to consumer interaction data

Moderate

butabarbital lopinavir

Applies to: Urelief Plus (butabarbital / hyoscyamine / phenazopyridine) and AccessPak for HIV PEP Expanded with Kaletra (emtricitabine / lopinavir / ritonavir / tenofovir)

MONITOR: Coadministration of lopinavir-ritonavir with inducers of CYP450 3A4 may decrease the plasma concentrations of lopinavir, which is primarily metabolized by the isoenzyme. Clinical studies have shown that potent CYP450 3A4 inducers such as rifampin and phenytoin can significantly alter the plasma concentrations of lopinavir, possibly by overriding some of the inhibiting effects of ritonavir and enhancing the clearance of both lopinavir and ritonavir. In 22 healthy, HIV-negative subjects, administration of lopinavir-ritonavir (400 mg-100 mg twice daily for 20 days) with rifampin (600 mg once daily for 10 days) decreased lopinavir peak plasma concentration (Cmax), systemic exposure (AUC) and trough plasma concentration (Cmin) by 55%, 75% and 99%, respectively. In another study of 12 healthy volunteers, coadministration of lopinavir-ritonavir (400 mg-100 mg twice daily for 22 days) and phenytoin (300 mg once daily on days 11 thru 22) resulted in decreases in Cmax, AUC and Cmin of lopinavir by 24%, 33% and 46%, respectively. Ritonavir Cmax, AUC and Cmin were also reduced by 20%, 28% and 47%, respectively, although only the change in Cmin was statistically significant. The extent to which other, less potent inducers of CYP450 3A4 may interact with lopinavir-ritonavir is unknown.

MANAGEMENT: Given the risk of reduced viral susceptibility and resistance development associated with subtherapeutic antiretroviral drug levels, caution is advised if lopinavir-ritonavir is prescribed with CYP450 3A4 inducers. Close clinical and laboratory monitoring of antiretroviral response is recommended.

References

  1. Brooks J, Daily J, Schwamm L "Protease inhibitors and anticonvulsants." AIDS Clin Care 9 (1997): 87,90
  2. Durant J, Clevenbergh P, Garraffo R, Halfon P, Icard S, DelGiudice P, Montagne N, Schapiro JM, Dellamonica P "Importance of protease inhibitor plasma levels in HIV-infected patients treated with genotypic-guided therapy: pharmacological data from the Viradapt Study." Aids 14 (2000): 1333-9
  3. "Product Information. Kaletra (lopinavir-ritonavir)." Abbott Pharmaceutical PROD (2001):
  4. Liedtke MD, Lockhart SM, Rathbun RC "Anticonvulsant and antiretroviral interactions." Ann Pharmacother 38 (2004): 482-9
  5. Lim ML, Min SS, Eron JJ, et al. "Coadministration of lopinavir/ritonavir and phenytoin results in two-way drug interaction through cytochrome P-450 induction." J Acquir Immune Defic Syndr 36 (2004): 1034-40
View all 5 references

Switch to consumer interaction data

Moderate

ritonavir tenofovir

Applies to: AccessPak for HIV PEP Expanded with Kaletra (emtricitabine / lopinavir / ritonavir / tenofovir) and AccessPak for HIV PEP Expanded with Kaletra (emtricitabine / lopinavir / ritonavir / tenofovir)

MONITOR: Coadministration with ritonavir, with or without lopinavir, has been suggested in postmarketing reports to increase the proximal tubular intracellular concentrations of tenofovir and potentiate the risk of tenofovir-induced nephrotoxicity. The proposed mechanism is ritonavir inhibition of tenofovir renal tubular secretion into the urine via multidrug resistance protein MRP2. Analysis of data from a compassionate access study in which 271 patients with advanced HIV disease received the combination for a mean duration of 63 weeks revealed no clinically significant nephrotoxicity associated with coadministration. However, there have been case reports of renal failure associated with acute tubular necrosis, Fanconi's syndrome, and nephrogenic diabetes insipidus in patients treated with tenofovir disoproxil fumarate in combination with ritonavir. Some patients had incomplete recovery of renal function more than a year after cessation of tenofovir therapy. Ritonavir given in combination with lopinavir has also been reported to modestly increase the plasma concentrations of tenofovir. In contrast, both slight decreases and no change in lopinavir and ritonavir concentrations have been reported.

MANAGEMENT: Caution is advised if tenofovir disoproxil fumarate is prescribed with ritonavir. Renal function should be monitored regularly, including surveillance for signs of tubulopathy such as glycosuria, acidosis, increases in serum creatinine level, electrolyte disturbances (e.g., hypokalemia, hypophosphatemia), and proteinuria. The same precaution may be applicable during therapy with other protease inhibitors based on their similar pharmacokinetic profile, although clinical data are lacking. Nelfinavir reportedly does not alter the pharmacokinetics of tenofovir, or vice versa. Tenofovir administration should be discontinued promptly if nephropathy develops.

References

  1. "Product Information. Viread (tenofovir)." Gilead Sciences (2001):
  2. Verhelst D, Monge M, Meynard JL, et al. "Fanconi syndrome and renal failure induced by tenofovir: A first case report." Am J Kidney Dis 40 (2002): 1331-3
  3. Creput C, Gonzalez-Canali G, Hill G, Piketty C, Kazatchkine M, Nochy D "Renal lesions in HIV-1-positive patient treated with tenofovir." AIDS 17 (2003): 935-7
  4. Karras A, Lafaurie M, Furco A, et al. "Tenofovir-related nephrotoxicity in human immunodeficiency virus-infected patients: three cases of renal failure, fanconi syndrome, and nephrogenic diabetes insipidus." Clin Infect Dis 36 (2003): 1070-3
  5. Kearney BP, Mittan A, Sayre J, et al. "Pharmacokinetic drug interaction and long term safety profile of tenofovir DF and lopinavir/ritonavir. http://www.icaac.org/ICAAC.asp" (2003):
  6. Rollot F, Nazal EM, Chauvelot-Moachon L, et al. "Tenofovir-related fanconi syndrome with nephrogenic diabetes insipidus in a patient with acquired immunodeficiency syndrome: the role of lopinavir-ritonavir-Didanosine." Clin Infect Dis 37 (2003): E174-6
  7. Zimmermann AE, Pizzoferrato T, Bedford J, Morris A, Hoffman R, Braden G "Tenofovir-associated acute and chronic kidney disease: a case of multiple drug interactions." Clin Infect Dis 42 (2006): 283-90
  8. Kapadia J, Shah S, Desai C, et al. "Tenofovir induced Fanconi syndrome: a possible pharmacokinetic interaction." Indian J Pharmacol 45 (2013): 191-2
View all 8 references

Switch to consumer interaction data

Moderate

lopinavir tenofovir

Applies to: AccessPak for HIV PEP Expanded with Kaletra (emtricitabine / lopinavir / ritonavir / tenofovir) and AccessPak for HIV PEP Expanded with Kaletra (emtricitabine / lopinavir / ritonavir / tenofovir)

MONITOR: Coadministration with ritonavir, with or without lopinavir, has been suggested in postmarketing reports to increase the proximal tubular intracellular concentrations of tenofovir and potentiate the risk of tenofovir-induced nephrotoxicity. The proposed mechanism is ritonavir inhibition of tenofovir renal tubular secretion into the urine via multidrug resistance protein MRP2. Analysis of data from a compassionate access study in which 271 patients with advanced HIV disease received the combination for a mean duration of 63 weeks revealed no clinically significant nephrotoxicity associated with coadministration. However, there have been case reports of renal failure associated with acute tubular necrosis, Fanconi's syndrome, and nephrogenic diabetes insipidus in patients treated with tenofovir disoproxil fumarate in combination with ritonavir. Some patients had incomplete recovery of renal function more than a year after cessation of tenofovir therapy. Ritonavir given in combination with lopinavir has also been reported to modestly increase the plasma concentrations of tenofovir. In contrast, both slight decreases and no change in lopinavir and ritonavir concentrations have been reported.

MANAGEMENT: Caution is advised if tenofovir disoproxil fumarate is prescribed with ritonavir. Renal function should be monitored regularly, including surveillance for signs of tubulopathy such as glycosuria, acidosis, increases in serum creatinine level, electrolyte disturbances (e.g., hypokalemia, hypophosphatemia), and proteinuria. The same precaution may be applicable during therapy with other protease inhibitors based on their similar pharmacokinetic profile, although clinical data are lacking. Nelfinavir reportedly does not alter the pharmacokinetics of tenofovir, or vice versa. Tenofovir administration should be discontinued promptly if nephropathy develops.

References

  1. "Product Information. Viread (tenofovir)." Gilead Sciences (2001):
  2. Verhelst D, Monge M, Meynard JL, et al. "Fanconi syndrome and renal failure induced by tenofovir: A first case report." Am J Kidney Dis 40 (2002): 1331-3
  3. Creput C, Gonzalez-Canali G, Hill G, Piketty C, Kazatchkine M, Nochy D "Renal lesions in HIV-1-positive patient treated with tenofovir." AIDS 17 (2003): 935-7
  4. Karras A, Lafaurie M, Furco A, et al. "Tenofovir-related nephrotoxicity in human immunodeficiency virus-infected patients: three cases of renal failure, fanconi syndrome, and nephrogenic diabetes insipidus." Clin Infect Dis 36 (2003): 1070-3
  5. Kearney BP, Mittan A, Sayre J, et al. "Pharmacokinetic drug interaction and long term safety profile of tenofovir DF and lopinavir/ritonavir. http://www.icaac.org/ICAAC.asp" (2003):
  6. Rollot F, Nazal EM, Chauvelot-Moachon L, et al. "Tenofovir-related fanconi syndrome with nephrogenic diabetes insipidus in a patient with acquired immunodeficiency syndrome: the role of lopinavir-ritonavir-Didanosine." Clin Infect Dis 37 (2003): E174-6
  7. Zimmermann AE, Pizzoferrato T, Bedford J, Morris A, Hoffman R, Braden G "Tenofovir-associated acute and chronic kidney disease: a case of multiple drug interactions." Clin Infect Dis 42 (2006): 283-90
  8. Kapadia J, Shah S, Desai C, et al. "Tenofovir induced Fanconi syndrome: a possible pharmacokinetic interaction." Indian J Pharmacol 45 (2013): 191-2
View all 8 references

Switch to consumer interaction data

Drug and food interactions

Major

butabarbital food

Applies to: Urelief Plus (butabarbital / hyoscyamine / phenazopyridine)

GENERALLY AVOID: Concurrent acute use of barbiturates and ethanol may result in additive CNS effects, including impaired coordination, sedation, and death. Tolerance of these agents may occur with chronic use. The mechanism is related to inhibition of microsomal enzymes acutely and induction of hepatic microsomal enzymes chronically.

MANAGEMENT: The combination of ethanol and barbiturates should be avoided.

References

  1. Gupta RC, Kofoed J "Toxological statistics for barbiturates, other sedatives, and tranquilizers in Ontario: a 10-year survey." Can Med Assoc J 94 (1966): 863-5
  2. Misra PS, Lefevre A, Ishii H, Rubin E, Lieber CS "Increase of ethanol, meprobamate and pentobarbital metabolism after chronic ethanol administration in man and in rats." Am J Med 51 (1971): 346-51
  3. Saario I, Linnoila M "Effect of subacute treatment with hypnotics, alone or in combination with alcohol, on psychomotor skills related to driving." Acta Pharmacol Toxicol (Copenh) 38 (1976): 382-92
  4. Stead AH, Moffat AC "Quantification of the interaction between barbiturates and alcohol and interpretation of fatal blood concentrations." Hum Toxicol 2 (1983): 5-14
  5. Seixas FA "Drug/alcohol interactions: avert potential dangers." Geriatrics 34 (1979): 89-102
View all 5 references

Switch to consumer interaction data

Moderate

ritonavir food

Applies to: AccessPak for HIV PEP Expanded with Kaletra (emtricitabine / lopinavir / ritonavir / tenofovir)

ADJUST DOSING INTERVAL: Administration with food may modestly affect the bioavailability of ritonavir from the various available formulations. When the oral solution was given under nonfasting conditions, peak ritonavir concentrations decreased 23% and the extent of absorption decreased 7% relative to fasting conditions. Dilution of the oral solution (within one hour of dosing) with 240 mL of chocolate milk or a nutritional supplement (Advera or Ensure) did not significantly affect the extent and rate of ritonavir absorption. When a single 100 mg dose of the tablet was administered with a high-fat meal (907 kcal; 52% fat, 15% protein, 33% carbohydrates), approximately 20% decreases in mean peak concentration (Cmax) and systemic exposure (AUC) were observed relative to administration after fasting. Similar decreases in Cmax and AUC were reported when the tablet was administered with a moderate-fat meal. In contrast, the extent of absorption of ritonavir from the soft gelatin capsule formulation was 13% higher when administered with a meal (615 KCal; 14.5% fat, 9% protein, and 76% carbohydrate) relative to fasting.

MANAGEMENT: Ritonavir should be taken with meals to enhance gastrointestinal tolerability.

References

  1. "Product Information. Norvir (ritonavir)." Abbott Pharmaceutical PROD (2001):

Switch to consumer interaction data

Moderate

lopinavir food

Applies to: AccessPak for HIV PEP Expanded with Kaletra (emtricitabine / lopinavir / ritonavir / tenofovir)

ADJUST DOSING INTERVAL: Food significantly increases the bioavailability of lopinavir from the oral solution formulation of lopinavir-ritonavir. Relative to fasting, administration of lopinavir-ritonavir oral solution with a moderate-fat meal (500 to 682 Kcal; 23% to 25% calories from fat) increased lopinavir peak plasma concentration (Cmax) and systemic exposure (AUC) by 54% and 80%, respectively, whereas administration with a high-fat meal (872 Kcal; 56% from fat) increased lopinavir Cmax and AUC by 56% and 130%, respectively. No clinically significant changes in Cmax and AUC were observed following administration of lopinavir-ritonavir tablets under fed conditions versus fasted conditions. Relative to fasting, administration of a single 400 mg-100 mg dose (two 200 mg-50 mg tablets) with a moderate-fat meal (558 Kcal; 24.1% calories from fat) increased lopinavir Cmax and AUC by 17.6% and 26.9%, respectively, while administration with a high-fat meal (998 Kcal; 51.3% from fat) increased lopinavir AUC by 18.9% but not Cmax. Relative to fasting, ritonavir Cmax and AUC also increased by 4.9% and 14.9%, respectively, with the moderate-fat meal and 10.3% and 23.9%, respectively, with the high-fat meal.

MANAGEMENT: Lopinavir-ritonavir oral solution should be taken with meals to enhance bioavailability and minimize pharmacokinetic variability. Lopinavir-ritonavir tablets may be taken without regard to meals.

References

  1. "Product Information. Kaletra (lopinavir-ritonavir)." Abbott Pharmaceutical PROD (2001):

Switch to consumer interaction data

Moderate

hyoscyamine food

Applies to: Urelief Plus (butabarbital / hyoscyamine / phenazopyridine)

GENERALLY AVOID: Use of anticholinergic agents with alcohol may result in sufficient impairment of attention so as to render driving and operating machinery more hazardous. In addition, the potential for abuse may be increased with the combination. The mechanism of interaction is not established but may involve additive depressant effects on the central nervous system. No effect of oral propantheline or atropine on blood alcohol levels was observed in healthy volunteers when administered before ingestion of a standard ethanol load. However, one study found impairment of attention in subjects given atropine 0.5 mg or glycopyrrolate 1 mg in combination with alcohol.

MANAGEMENT: Alcohol should generally be avoided during therapy with anticholinergic agents. Patients should be counseled to avoid activities requiring mental alertness until they know how these agents affect them.

References

  1. Linnoila M "Drug effects on psychomotor skills related to driving: interaction of atropine, glycopyrrhonium and alcohol." Eur J Clin Pharmacol 6 (1973): 107-12

Switch to consumer interaction data

Minor

tenofovir food

Applies to: AccessPak for HIV PEP Expanded with Kaletra (emtricitabine / lopinavir / ritonavir / tenofovir)

Food enhances the oral absorption and bioavailability of tenofovir, the active entity of tenofovir disoproxil fumarate. According to the product labeling, administration of the drug following a high-fat meal increased the mean peak plasma concentration (Cmax) and area under the concentration-time curve (AUC) of tenofovir by approximately 14% and 40%, respectively, compared to administration in the fasting state. However, administration with a light meal did not significantly affect the pharmacokinetics of tenofovir compared to administration in the fasting state. Food delays the time to reach tenofovir Cmax by approximately 1 hour. Tenofovir disoproxil fumarate may be administered without regard to meals.

References

  1. "Product Information. Viread (tenofovir)." Gilead Sciences (2001):

Switch to consumer interaction data

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Loading...
QR code containing a link to this page

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.