Skip to main content

Drug Interactions between AccessPak for HIV PEP Expanded with Kaletra and pexidartinib

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Major

ritonavir pexidartinib

Applies to: AccessPak for HIV PEP Expanded with Kaletra (emtricitabine / lopinavir / ritonavir / tenofovir disoproxil) and pexidartinib

GENERALLY AVOID: Coadministration of pexidartinib with strong CYP450 3A4 inhibitors and/or uridine diphosphate glucuronosyltransferase (UGT) inhibitors may significantly increase the plasma concentrations and the incidence and severity of adverse effects of pexidartinib, including potentially fatal hepatotoxicity. The proposed mechanism is inhibition of CYP450 3A4 and/or UGT, the primary isoenzymes responsible for the metabolic clearance of pexidartinib. Concomitant administration of itraconazole, a strong CYP450 3A4 inhibitor, increased pexidartinib peak plasma concentration (Cmax) and systemic exposure (AUC) by 48% and 70%, respectively. Coadministration with probenecid, a UGT inhibitor, increased pexidartinib Cmax and AUC by 5% and 60%, respectively.

MANAGEMENT: The use of pexidartinib with strong CYP450 3A4 inhibitors and/or UGT inhibitors should generally be avoided. If concomitant use is required, the dose of pexidartinib should be reduced according to the manufacturer's recommendations. If concomitant use of a strong CYP450 3A4 inhibitor or UGT inhibitor is discontinued, the dose of pexidartinib may be increased, after 3 plasma half-lives of the strong CYP450 3A4 inhibitor or UGT inhibitor, to the dose that was used prior to starting the strong CYP450 3A4 inhibitor or UGT inhibitor.

References (1)
  1. (2019) "Product Information. Turalio (pexidartinib)." Daiichi Sankyo, Inc.
Major

tenofovir pexidartinib

Applies to: AccessPak for HIV PEP Expanded with Kaletra (emtricitabine / lopinavir / ritonavir / tenofovir disoproxil) and pexidartinib

GENERALLY AVOID: Serious cases of hepatotoxicity, some fatal, have occurred in patients treated with pexidartinib. Concomitant use of other potentially hepatotoxic agents may potentiate the risk of liver injury. The mechanism of hepatotoxicity is unknown, its occurrence cannot be predicted, and it is unknown whether liver injury occurs in the absence of increased transaminases. In one study, 5% of patients who received pexidartinib developed signs of serious liver injury (elevated serum transaminases greater than 3 times the upper limit of normal (ULN) and total bilirubin greater than 2 times ULN). In these patients, peak ALT ranged from 6 to 9 times ULN, peak total bilirubin ranged from 2.5 to 15 times ULN, and ALP was greater than 2 times ULN. Liver transaminases and total bilirubin improved to less than 2 times ULN in these patients 1 to 7 months after discontinuing pexidartinib.

MANAGEMENT: The use of pexidartinib with other potentially hepatotoxic agents should be avoided. Patients treated with pexidartinib should have liver function tests, including AST, ALT, total bilirubin, direct bilirubin, ALP, and gamma-glutamyl transferase (GGT), prior to initiation of pexidartinib, weekly for the first 8 weeks, every 2 weeks for the next month, and every 3 months thereafter. Pexidartinib therapy may require a dosage reduction, to be withheld, or permanently discontinued based on the severity of the hepatotoxicity. A recurrence of increased serum transaminases, bilirubin, or ALP may occur upon rechallenge with a reduced dose of pexidartinib. Liver function tests should be performed weekly for the first month after rechallenge. Patients should be advised to seek medical attention if they experience potential signs and symptoms of hepatotoxicity such as fever, rash, itching, anorexia, nausea, vomiting, fatigue, malaise, right upper quadrant pain, dark urine, pale stools, and jaundice.

References (1)
  1. (2019) "Product Information. Turalio (pexidartinib)." Daiichi Sankyo, Inc.
Major

emtricitabine pexidartinib

Applies to: AccessPak for HIV PEP Expanded with Kaletra (emtricitabine / lopinavir / ritonavir / tenofovir disoproxil) and pexidartinib

GENERALLY AVOID: Serious cases of hepatotoxicity, some fatal, have occurred in patients treated with pexidartinib. Concomitant use of other potentially hepatotoxic agents may potentiate the risk of liver injury. The mechanism of hepatotoxicity is unknown, its occurrence cannot be predicted, and it is unknown whether liver injury occurs in the absence of increased transaminases. In one study, 5% of patients who received pexidartinib developed signs of serious liver injury (elevated serum transaminases greater than 3 times the upper limit of normal (ULN) and total bilirubin greater than 2 times ULN). In these patients, peak ALT ranged from 6 to 9 times ULN, peak total bilirubin ranged from 2.5 to 15 times ULN, and ALP was greater than 2 times ULN. Liver transaminases and total bilirubin improved to less than 2 times ULN in these patients 1 to 7 months after discontinuing pexidartinib.

MANAGEMENT: The use of pexidartinib with other potentially hepatotoxic agents should be avoided. Patients treated with pexidartinib should have liver function tests, including AST, ALT, total bilirubin, direct bilirubin, ALP, and gamma-glutamyl transferase (GGT), prior to initiation of pexidartinib, weekly for the first 8 weeks, every 2 weeks for the next month, and every 3 months thereafter. Pexidartinib therapy may require a dosage reduction, to be withheld, or permanently discontinued based on the severity of the hepatotoxicity. A recurrence of increased serum transaminases, bilirubin, or ALP may occur upon rechallenge with a reduced dose of pexidartinib. Liver function tests should be performed weekly for the first month after rechallenge. Patients should be advised to seek medical attention if they experience potential signs and symptoms of hepatotoxicity such as fever, rash, itching, anorexia, nausea, vomiting, fatigue, malaise, right upper quadrant pain, dark urine, pale stools, and jaundice.

References (1)
  1. (2019) "Product Information. Turalio (pexidartinib)." Daiichi Sankyo, Inc.
Moderate

ritonavir tenofovir

Applies to: AccessPak for HIV PEP Expanded with Kaletra (emtricitabine / lopinavir / ritonavir / tenofovir disoproxil) and AccessPak for HIV PEP Expanded with Kaletra (emtricitabine / lopinavir / ritonavir / tenofovir disoproxil)

MONITOR: Coadministration with ritonavir, with or without lopinavir, has been suggested in postmarketing reports to increase the proximal tubular intracellular concentrations of tenofovir and potentiate the risk of tenofovir-induced nephrotoxicity. The proposed mechanism is ritonavir inhibition of tenofovir renal tubular secretion into the urine via multidrug resistance protein MRP2. Analysis of data from a compassionate access study in which 271 patients with advanced HIV disease received the combination for a mean duration of 63 weeks revealed no clinically significant nephrotoxicity associated with coadministration. However, there have been case reports of renal failure associated with acute tubular necrosis, Fanconi's syndrome, and nephrogenic diabetes insipidus in patients treated with tenofovir disoproxil fumarate in combination with ritonavir. Some patients had incomplete recovery of renal function more than a year after cessation of tenofovir therapy. Ritonavir given in combination with lopinavir has also been reported to modestly increase the plasma concentrations of tenofovir. In contrast, both slight decreases and no change in lopinavir and ritonavir concentrations have been reported.

MANAGEMENT: Caution is advised if tenofovir disoproxil fumarate is prescribed with ritonavir. Renal function should be monitored regularly, including surveillance for signs of tubulopathy such as glycosuria, acidosis, increases in serum creatinine level, electrolyte disturbances (e.g., hypokalemia, hypophosphatemia), and proteinuria. The same precaution may be applicable during therapy with other protease inhibitors based on their similar pharmacokinetic profile, although clinical data are lacking. Nelfinavir reportedly does not alter the pharmacokinetics of tenofovir, or vice versa. Tenofovir administration should be discontinued promptly if nephropathy develops.

References (8)
  1. (2001) "Product Information. Viread (tenofovir)." Gilead Sciences
  2. Verhelst D, Monge M, Meynard JL, et al. (2002) "Fanconi syndrome and renal failure induced by tenofovir: A first case report." Am J Kidney Dis, 40, p. 1331-3
  3. Creput C, Gonzalez-Canali G, Hill G, Piketty C, Kazatchkine M, Nochy D (2003) "Renal lesions in HIV-1-positive patient treated with tenofovir." AIDS, 17, p. 935-7
  4. Karras A, Lafaurie M, Furco A, et al. (2003) "Tenofovir-related nephrotoxicity in human immunodeficiency virus-infected patients: three cases of renal failure, fanconi syndrome, and nephrogenic diabetes insipidus." Clin Infect Dis, 36, p. 1070-3
  5. Kearney BP, Mittan A, Sayre J, et al. (2003) Pharmacokinetic drug interaction and long term safety profile of tenofovir DF and lopinavir/ritonavir. http://www.icaac.org/ICAAC.asp
  6. Rollot F, Nazal EM, Chauvelot-Moachon L, et al. (2003) "Tenofovir-related fanconi syndrome with nephrogenic diabetes insipidus in a patient with acquired immunodeficiency syndrome: the role of lopinavir-ritonavir-Didanosine." Clin Infect Dis, 37, E174-6
  7. Zimmermann AE, Pizzoferrato T, Bedford J, Morris A, Hoffman R, Braden G (2006) "Tenofovir-associated acute and chronic kidney disease: a case of multiple drug interactions." Clin Infect Dis, 42, p. 283-90
  8. Kapadia J, Shah S, Desai C, et al. (2013) "Tenofovir induced Fanconi syndrome: a possible pharmacokinetic interaction." Indian J Pharmacol, 45, p. 191-2
Moderate

lopinavir tenofovir

Applies to: AccessPak for HIV PEP Expanded with Kaletra (emtricitabine / lopinavir / ritonavir / tenofovir disoproxil) and AccessPak for HIV PEP Expanded with Kaletra (emtricitabine / lopinavir / ritonavir / tenofovir disoproxil)

MONITOR: Coadministration with ritonavir, with or without lopinavir, has been suggested in postmarketing reports to increase the proximal tubular intracellular concentrations of tenofovir and potentiate the risk of tenofovir-induced nephrotoxicity. The proposed mechanism is ritonavir inhibition of tenofovir renal tubular secretion into the urine via multidrug resistance protein MRP2. Analysis of data from a compassionate access study in which 271 patients with advanced HIV disease received the combination for a mean duration of 63 weeks revealed no clinically significant nephrotoxicity associated with coadministration. However, there have been case reports of renal failure associated with acute tubular necrosis, Fanconi's syndrome, and nephrogenic diabetes insipidus in patients treated with tenofovir disoproxil fumarate in combination with ritonavir. Some patients had incomplete recovery of renal function more than a year after cessation of tenofovir therapy. Ritonavir given in combination with lopinavir has also been reported to modestly increase the plasma concentrations of tenofovir. In contrast, both slight decreases and no change in lopinavir and ritonavir concentrations have been reported.

MANAGEMENT: Caution is advised if tenofovir disoproxil fumarate is prescribed with ritonavir. Renal function should be monitored regularly, including surveillance for signs of tubulopathy such as glycosuria, acidosis, increases in serum creatinine level, electrolyte disturbances (e.g., hypokalemia, hypophosphatemia), and proteinuria. The same precaution may be applicable during therapy with other protease inhibitors based on their similar pharmacokinetic profile, although clinical data are lacking. Nelfinavir reportedly does not alter the pharmacokinetics of tenofovir, or vice versa. Tenofovir administration should be discontinued promptly if nephropathy develops.

References (8)
  1. (2001) "Product Information. Viread (tenofovir)." Gilead Sciences
  2. Verhelst D, Monge M, Meynard JL, et al. (2002) "Fanconi syndrome and renal failure induced by tenofovir: A first case report." Am J Kidney Dis, 40, p. 1331-3
  3. Creput C, Gonzalez-Canali G, Hill G, Piketty C, Kazatchkine M, Nochy D (2003) "Renal lesions in HIV-1-positive patient treated with tenofovir." AIDS, 17, p. 935-7
  4. Karras A, Lafaurie M, Furco A, et al. (2003) "Tenofovir-related nephrotoxicity in human immunodeficiency virus-infected patients: three cases of renal failure, fanconi syndrome, and nephrogenic diabetes insipidus." Clin Infect Dis, 36, p. 1070-3
  5. Kearney BP, Mittan A, Sayre J, et al. (2003) Pharmacokinetic drug interaction and long term safety profile of tenofovir DF and lopinavir/ritonavir. http://www.icaac.org/ICAAC.asp
  6. Rollot F, Nazal EM, Chauvelot-Moachon L, et al. (2003) "Tenofovir-related fanconi syndrome with nephrogenic diabetes insipidus in a patient with acquired immunodeficiency syndrome: the role of lopinavir-ritonavir-Didanosine." Clin Infect Dis, 37, E174-6
  7. Zimmermann AE, Pizzoferrato T, Bedford J, Morris A, Hoffman R, Braden G (2006) "Tenofovir-associated acute and chronic kidney disease: a case of multiple drug interactions." Clin Infect Dis, 42, p. 283-90
  8. Kapadia J, Shah S, Desai C, et al. (2013) "Tenofovir induced Fanconi syndrome: a possible pharmacokinetic interaction." Indian J Pharmacol, 45, p. 191-2
Moderate

lopinavir pexidartinib

Applies to: AccessPak for HIV PEP Expanded with Kaletra (emtricitabine / lopinavir / ritonavir / tenofovir disoproxil) and pexidartinib

MONITOR: Coadministration of lopinavir-ritonavir with inducers of CYP450 3A4 may decrease the plasma concentrations of lopinavir, which is primarily metabolized by the isoenzyme. Clinical studies have shown that potent CYP450 3A4 inducers such as rifampin and phenytoin can significantly alter the plasma concentrations of lopinavir, possibly by overriding some of the inhibiting effects of ritonavir and enhancing the clearance of both lopinavir and ritonavir. In 22 healthy, HIV-negative subjects, administration of lopinavir-ritonavir (400 mg-100 mg twice daily for 20 days) with rifampin (600 mg once daily for 10 days) decreased lopinavir peak plasma concentration (Cmax), systemic exposure (AUC) and trough plasma concentration (Cmin) by 55%, 75% and 99%, respectively. In another study of 12 healthy volunteers, coadministration of lopinavir-ritonavir (400 mg-100 mg twice daily for 22 days) and phenytoin (300 mg once daily on days 11 through 22) resulted in decreases in Cmax, AUC and Cmin of lopinavir by 24%, 33% and 46%, respectively. Ritonavir Cmax, AUC and Cmin were also reduced by 20%, 28% and 47%, respectively, although only the change in Cmin was statistically significant. The extent to which other, less potent inducers of CYP450 3A4 may interact with lopinavir-ritonavir is unknown. In addition, when two or more medications with similar adverse effect profiles are given concurrently, the likelihood of experiencing these adverse reactions may be increased. For example, coadministration with other agents that can prolong the QT interval (e.g., apalutamide, encorafenib, enzalutamide) may result in additive effects and an increased risk of ventricular arrhythmias like torsade de pointes.

MANAGEMENT: Given the risk of reduced viral susceptibility and resistance development associated with subtherapeutic antiretroviral drug levels, caution is advised if lopinavir-ritonavir is prescribed with CYP450 3A4 inducers. Close clinical and laboratory monitoring of antiretroviral response is recommended. If the CYP450 3A4 inducer also carries a risk of prolonging the QT interval, then obtaining more frequent electrocardiograms (ECGs) to monitor the QT interval may be advisable. Patients should be counseled to seek immediate medical attention if they experience symptoms that could indicate the occurrence of torsade de pointes such as dizziness, lightheadedness, syncope, palpitations, irregular heartbeat, and/or shortness of breath. The prescribing information for the concomitant CYP450 3A4 inducers should be consulted for specific recommendations.

References (5)
  1. Brooks J, Daily J, Schwamm L (1997) "Protease inhibitors and anticonvulsants." AIDS Clin Care, 9, 87,90
  2. Durant J, Clevenbergh P, Garraffo R, Halfon P, Icard S, DelGiudice P, Montagne N, Schapiro JM, Dellamonica P (2000) "Importance of protease inhibitor plasma levels in HIV-infected patients treated with genotypic-guided therapy: pharmacological data from the Viradapt Study." Aids, 14, p. 1333-9
  3. (2001) "Product Information. Kaletra (lopinavir-ritonavir)." Abbott Pharmaceutical
  4. Liedtke MD, Lockhart SM, Rathbun RC (2004) "Anticonvulsant and antiretroviral interactions." Ann Pharmacother, 38, p. 482-9
  5. Lim ML, Min SS, Eron JJ, et al. (2004) "Coadministration of lopinavir/ritonavir and phenytoin results in two-way drug interaction through cytochrome P-450 induction." J Acquir Immune Defic Syndr, 36, p. 1034-40

Drug and food/lifestyle interactions

Major

pexidartinib food/lifestyle

Applies to: pexidartinib

ADJUST DOSING INTERVAL: The presence of food may increase the absorption and toxicity of pexidartinib. Administration of pexidartinib with a high-fat meal increased peak plasma concentration (Cmax) and systemic exposure (AUC) by 100% and prolonged the time to reach peak plasma concentration (Tmax) by 2.5 hours.

GENERALLY AVOID: Grapefruit or grapefruit juice may increase the plasma concentration and risk of adverse effects of pexidartinib, including potentially fatal hepatotoxicity. The mechanism is inhibition of CYP450 3A4-mediated metabolism of pexidartinib by certain compounds present in grapefruits. Concomitant administration of itraconazole, a strong CYP450 3A4 inhibitor, increased pexidartinib peak plasma concentration (Cmax) and systemic exposure (AUC) by 48% and 70%, respectively.

MANAGEMENT: Pexidartinib should be administered on an empty stomach, at least one hour before or two hours after a meal or snack. Consumption of grapefruit or grapefruit juice should generally be avoided during pexidartinib therapy. If concomitant use is unavoidable, the dose of pexidartinib should be reduced according to the manufacturer's recommendations. If concomitant use of grapefruit or grapefruit juice is discontinued, the dose of pexidartinib may be increased (after 3 plasma half-lives of a strong CYP450 3A4 inhibitor) to the dose that was used prior to consumption of grapefruit or grapefruit juice.

References (1)
  1. (2019) "Product Information. Turalio (pexidartinib)." Daiichi Sankyo, Inc.
Moderate

ritonavir food/lifestyle

Applies to: AccessPak for HIV PEP Expanded with Kaletra (emtricitabine / lopinavir / ritonavir / tenofovir disoproxil)

ADJUST DOSING INTERVAL: Administration with food may modestly affect the bioavailability of ritonavir from the various available formulations. When the oral solution was given under nonfasting conditions, peak ritonavir concentrations decreased 23% and the extent of absorption decreased 7% relative to fasting conditions. Dilution of the oral solution (within one hour of dosing) with 240 mL of chocolate milk or a nutritional supplement (Advera or Ensure) did not significantly affect the extent and rate of ritonavir absorption. When a single 100 mg dose of the tablet was administered with a high-fat meal (907 kcal; 52% fat, 15% protein, 33% carbohydrates), approximately 20% decreases in mean peak concentration (Cmax) and systemic exposure (AUC) were observed relative to administration after fasting. Similar decreases in Cmax and AUC were reported when the tablet was administered with a moderate-fat meal. In contrast, the extent of absorption of ritonavir from the soft gelatin capsule formulation was 13% higher when administered with a meal (615 KCal; 14.5% fat, 9% protein, and 76% carbohydrate) relative to fasting.

MANAGEMENT: Ritonavir should be taken with meals to enhance gastrointestinal tolerability.

References (1)
  1. (2001) "Product Information. Norvir (ritonavir)." Abbott Pharmaceutical
Moderate

lopinavir food/lifestyle

Applies to: AccessPak for HIV PEP Expanded with Kaletra (emtricitabine / lopinavir / ritonavir / tenofovir disoproxil)

ADJUST DOSING INTERVAL: Food significantly increases the bioavailability of lopinavir from the oral solution formulation of lopinavir-ritonavir. Relative to fasting, administration of lopinavir-ritonavir oral solution with a moderate-fat meal (500 to 682 Kcal; 23% to 25% calories from fat) increased lopinavir peak plasma concentration (Cmax) and systemic exposure (AUC) by 54% and 80%, respectively, whereas administration with a high-fat meal (872 Kcal; 56% from fat) increased lopinavir Cmax and AUC by 56% and 130%, respectively. No clinically significant changes in Cmax and AUC were observed following administration of lopinavir-ritonavir tablets under fed conditions versus fasted conditions. Relative to fasting, administration of a single 400 mg-100 mg dose (two 200 mg-50 mg tablets) with a moderate-fat meal (558 Kcal; 24.1% calories from fat) increased lopinavir Cmax and AUC by 17.6% and 26.9%, respectively, while administration with a high-fat meal (998 Kcal; 51.3% from fat) increased lopinavir AUC by 18.9% but not Cmax. Relative to fasting, ritonavir Cmax and AUC also increased by 4.9% and 14.9%, respectively, with the moderate-fat meal and 10.3% and 23.9%, respectively, with the high-fat meal.

MANAGEMENT: Lopinavir-ritonavir oral solution should be taken with meals to enhance bioavailability and minimize pharmacokinetic variability. Lopinavir-ritonavir tablets may be taken without regard to meals.

References (1)
  1. (2001) "Product Information. Kaletra (lopinavir-ritonavir)." Abbott Pharmaceutical
Minor

tenofovir food/lifestyle

Applies to: AccessPak for HIV PEP Expanded with Kaletra (emtricitabine / lopinavir / ritonavir / tenofovir disoproxil)

Food enhances the oral absorption and bioavailability of tenofovir, the active entity of tenofovir disoproxil fumarate. According to the product labeling, administration of the drug following a high-fat meal increased the mean peak plasma concentration (Cmax) and area under the concentration-time curve (AUC) of tenofovir by approximately 14% and 40%, respectively, compared to administration in the fasting state. However, administration with a light meal did not significantly affect the pharmacokinetics of tenofovir compared to administration in the fasting state. Food delays the time to reach tenofovir Cmax by approximately 1 hour. Tenofovir disoproxil fumarate may be administered without regard to meals.

References (1)
  1. (2001) "Product Information. Viread (tenofovir)." Gilead Sciences

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.