Skip to main content

Drug Interactions between AccessPak for HIV PEP Expanded with Kaletra and dabrafenib

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Moderate

ritonavir tenofovir

Applies to: AccessPak for HIV PEP Expanded with Kaletra (emtricitabine / lopinavir / ritonavir / tenofovir) and AccessPak for HIV PEP Expanded with Kaletra (emtricitabine / lopinavir / ritonavir / tenofovir)

MONITOR: Coadministration with ritonavir, with or without lopinavir, has been suggested in postmarketing reports to increase the proximal tubular intracellular concentrations of tenofovir and potentiate the risk of tenofovir-induced nephrotoxicity. The proposed mechanism is ritonavir inhibition of tenofovir renal tubular secretion into the urine via multidrug resistance protein MRP2. Analysis of data from a compassionate access study in which 271 patients with advanced HIV disease received the combination for a mean duration of 63 weeks revealed no clinically significant nephrotoxicity associated with coadministration. However, there have been case reports of renal failure associated with acute tubular necrosis, Fanconi's syndrome, and nephrogenic diabetes insipidus in patients treated with tenofovir disoproxil fumarate in combination with ritonavir. Some patients had incomplete recovery of renal function more than a year after cessation of tenofovir therapy. Ritonavir given in combination with lopinavir has also been reported to modestly increase the plasma concentrations of tenofovir. In contrast, both slight decreases and no change in lopinavir and ritonavir concentrations have been reported.

MANAGEMENT: Caution is advised if tenofovir disoproxil fumarate is prescribed with ritonavir. Renal function should be monitored regularly, including surveillance for signs of tubulopathy such as glycosuria, acidosis, increases in serum creatinine level, electrolyte disturbances (e.g., hypokalemia, hypophosphatemia), and proteinuria. The same precaution may be applicable during therapy with other protease inhibitors based on their similar pharmacokinetic profile, although clinical data are lacking. Nelfinavir reportedly does not alter the pharmacokinetics of tenofovir, or vice versa. Tenofovir administration should be discontinued promptly if nephropathy develops.

References

  1. (2001) "Product Information. Viread (tenofovir)." Gilead Sciences
  2. Verhelst D, Monge M, Meynard JL, et al. (2002) "Fanconi syndrome and renal failure induced by tenofovir: A first case report." Am J Kidney Dis, 40, p. 1331-3
  3. Creput C, Gonzalez-Canali G, Hill G, Piketty C, Kazatchkine M, Nochy D (2003) "Renal lesions in HIV-1-positive patient treated with tenofovir." AIDS, 17, p. 935-7
  4. Karras A, Lafaurie M, Furco A, et al. (2003) "Tenofovir-related nephrotoxicity in human immunodeficiency virus-infected patients: three cases of renal failure, fanconi syndrome, and nephrogenic diabetes insipidus." Clin Infect Dis, 36, p. 1070-3
  5. Kearney BP, Mittan A, Sayre J, et al. (2003) Pharmacokinetic drug interaction and long term safety profile of tenofovir DF and lopinavir/ritonavir. http://www.icaac.org/ICAAC.asp
  6. Rollot F, Nazal EM, Chauvelot-Moachon L, et al. (2003) "Tenofovir-related fanconi syndrome with nephrogenic diabetes insipidus in a patient with acquired immunodeficiency syndrome: the role of lopinavir-ritonavir-Didanosine." Clin Infect Dis, 37, E174-6
  7. Zimmermann AE, Pizzoferrato T, Bedford J, Morris A, Hoffman R, Braden G (2006) "Tenofovir-associated acute and chronic kidney disease: a case of multiple drug interactions." Clin Infect Dis, 42, p. 283-90
  8. Kapadia J, Shah S, Desai C, et al. (2013) "Tenofovir induced Fanconi syndrome: a possible pharmacokinetic interaction." Indian J Pharmacol, 45, p. 191-2
View all 8 references

Switch to consumer interaction data

Moderate

ritonavir dabrafenib

Applies to: AccessPak for HIV PEP Expanded with Kaletra (emtricitabine / lopinavir / ritonavir / tenofovir) and dabrafenib

GENERALLY AVOID: Coadministration with potent inhibitors of CYP450 3A4 and/or 2C8 may increase the plasma concentrations of dabrafenib and its active metabolites. In vitro studies have shown that dabrafenib is a substrate of CYP450 3A4 and 2C8, while hydroxy-dabrafenib and desmethyl-dabrafenib are substrates of CYP450 3A4. In a pharmacokinetic study, administration of dabrafenib 75 mg twice daily in combination with the potent CYP450 3A4 inhibitor ketoconazole 400 mg once daily for 4 days increased dabrafenib systemic exposure (AUC) by 71%, hydroxy-dabrafenib AUC by 82%, and desmethyl-dabrafenib AUC by 68%. When dabrafenib was given similarly with the potent CYP450 2C8 inhibitor gemfibrozil 600 mg twice daily for 4 days, dabrafenib AUC increased by 47%, but AUC of the metabolites did not change.

MONITOR: Coadministration with dabrafenib may decrease the plasma concentrations of drugs that are substrates of CYP450 3A4, including many of the known inhibitors of the isoenzyme such as conivaptan, delavirdine, nefazodone, telithromycin, and most azole antifungal agents, macrolide antibiotics, and protease inhibitors. Dabrafenib has been found in vitro to be a dose-dependent inducer of CYP450 3A4. Onset of induction is likely to occur after 3 days of repeat dosing with dabrafenib; however, transient inhibition of CYP450 3A4 may be observed during the first few days of treatment. In 12 study subjects, administration of the CYP450 3A4 probe substrate midazolam following repeat doses of dabrafenib 150 mg twice daily for 15 days reduced midazolam peak plasma concentration (Cmax) by 61% and systemic exposure (AUC) by 74%.

MANAGEMENT: The use of dabrafenib with potent CYP450 2C8 inhibitors such as gemfibrozil or potent CYP450 3A4 inhibitors such as ceritinib, clarithromycin, cobicistat, conivaptan, delavirdine, erythromycin, idelalisib, nefazodone, telithromycin, and most protease inhibitors and azole antifungal agents should generally be avoided if possible. Some authorities recommend avoiding concomitant use of dabrafenib during and for 2 weeks after treatment with itraconazole. Otherwise, patients should be closely monitored for development of adverse effects such as febrile reactions (high fever or fever accompanied by rigors, hypotension, dehydration, or renal failure), hyperglycemia, uveitis, and cutaneous malignancies (e.g., squamous cell carcinoma, keratoacanthoma, melanoma). During coadministration of dabrafenib with a CYP450 3A4 inhibitor, the potential for diminished therapeutic effects of the inhibitor should also be considered.

References

  1. (2002) "Product Information. Sporanox (itraconazole)." Janssen Pharmaceuticals
  2. Cerner Multum, Inc. "Australian Product Information."
  3. (2013) "Product Information. Tafinlar (dabrafenib)." GlaxoSmithKline

Switch to consumer interaction data

Moderate

lopinavir tenofovir

Applies to: AccessPak for HIV PEP Expanded with Kaletra (emtricitabine / lopinavir / ritonavir / tenofovir) and AccessPak for HIV PEP Expanded with Kaletra (emtricitabine / lopinavir / ritonavir / tenofovir)

MONITOR: Coadministration with ritonavir, with or without lopinavir, has been suggested in postmarketing reports to increase the proximal tubular intracellular concentrations of tenofovir and potentiate the risk of tenofovir-induced nephrotoxicity. The proposed mechanism is ritonavir inhibition of tenofovir renal tubular secretion into the urine via multidrug resistance protein MRP2. Analysis of data from a compassionate access study in which 271 patients with advanced HIV disease received the combination for a mean duration of 63 weeks revealed no clinically significant nephrotoxicity associated with coadministration. However, there have been case reports of renal failure associated with acute tubular necrosis, Fanconi's syndrome, and nephrogenic diabetes insipidus in patients treated with tenofovir disoproxil fumarate in combination with ritonavir. Some patients had incomplete recovery of renal function more than a year after cessation of tenofovir therapy. Ritonavir given in combination with lopinavir has also been reported to modestly increase the plasma concentrations of tenofovir. In contrast, both slight decreases and no change in lopinavir and ritonavir concentrations have been reported.

MANAGEMENT: Caution is advised if tenofovir disoproxil fumarate is prescribed with ritonavir. Renal function should be monitored regularly, including surveillance for signs of tubulopathy such as glycosuria, acidosis, increases in serum creatinine level, electrolyte disturbances (e.g., hypokalemia, hypophosphatemia), and proteinuria. The same precaution may be applicable during therapy with other protease inhibitors based on their similar pharmacokinetic profile, although clinical data are lacking. Nelfinavir reportedly does not alter the pharmacokinetics of tenofovir, or vice versa. Tenofovir administration should be discontinued promptly if nephropathy develops.

References

  1. (2001) "Product Information. Viread (tenofovir)." Gilead Sciences
  2. Verhelst D, Monge M, Meynard JL, et al. (2002) "Fanconi syndrome and renal failure induced by tenofovir: A first case report." Am J Kidney Dis, 40, p. 1331-3
  3. Creput C, Gonzalez-Canali G, Hill G, Piketty C, Kazatchkine M, Nochy D (2003) "Renal lesions in HIV-1-positive patient treated with tenofovir." AIDS, 17, p. 935-7
  4. Karras A, Lafaurie M, Furco A, et al. (2003) "Tenofovir-related nephrotoxicity in human immunodeficiency virus-infected patients: three cases of renal failure, fanconi syndrome, and nephrogenic diabetes insipidus." Clin Infect Dis, 36, p. 1070-3
  5. Kearney BP, Mittan A, Sayre J, et al. (2003) Pharmacokinetic drug interaction and long term safety profile of tenofovir DF and lopinavir/ritonavir. http://www.icaac.org/ICAAC.asp
  6. Rollot F, Nazal EM, Chauvelot-Moachon L, et al. (2003) "Tenofovir-related fanconi syndrome with nephrogenic diabetes insipidus in a patient with acquired immunodeficiency syndrome: the role of lopinavir-ritonavir-Didanosine." Clin Infect Dis, 37, E174-6
  7. Zimmermann AE, Pizzoferrato T, Bedford J, Morris A, Hoffman R, Braden G (2006) "Tenofovir-associated acute and chronic kidney disease: a case of multiple drug interactions." Clin Infect Dis, 42, p. 283-90
  8. Kapadia J, Shah S, Desai C, et al. (2013) "Tenofovir induced Fanconi syndrome: a possible pharmacokinetic interaction." Indian J Pharmacol, 45, p. 191-2
View all 8 references

Switch to consumer interaction data

Moderate

lopinavir dabrafenib

Applies to: AccessPak for HIV PEP Expanded with Kaletra (emtricitabine / lopinavir / ritonavir / tenofovir) and dabrafenib

MONITOR: Coadministration of lopinavir-ritonavir with inducers of CYP450 3A4 may decrease the plasma concentrations of lopinavir, which is primarily metabolized by the isoenzyme. Clinical studies have shown that potent CYP450 3A4 inducers such as rifampin and phenytoin can significantly alter the plasma concentrations of lopinavir, possibly by overriding some of the inhibiting effects of ritonavir and enhancing the clearance of both lopinavir and ritonavir. In 22 healthy, HIV-negative subjects, administration of lopinavir-ritonavir (400 mg-100 mg twice daily for 20 days) with rifampin (600 mg once daily for 10 days) decreased lopinavir peak plasma concentration (Cmax), systemic exposure (AUC) and trough plasma concentration (Cmin) by 55%, 75% and 99%, respectively. In another study of 12 healthy volunteers, coadministration of lopinavir-ritonavir (400 mg-100 mg twice daily for 22 days) and phenytoin (300 mg once daily on days 11 thru 22) resulted in decreases in Cmax, AUC and Cmin of lopinavir by 24%, 33% and 46%, respectively. Ritonavir Cmax, AUC and Cmin were also reduced by 20%, 28% and 47%, respectively, although only the change in Cmin was statistically significant. The extent to which other, less potent inducers of CYP450 3A4 may interact with lopinavir-ritonavir is unknown.

MANAGEMENT: Given the risk of reduced viral susceptibility and resistance development associated with subtherapeutic antiretroviral drug levels, caution is advised if lopinavir-ritonavir is prescribed with CYP450 3A4 inducers. Close clinical and laboratory monitoring of antiretroviral response is recommended.

References

  1. Brooks J, Daily J, Schwamm L (1997) "Protease inhibitors and anticonvulsants." AIDS Clin Care, 9, 87,90
  2. Durant J, Clevenbergh P, Garraffo R, Halfon P, Icard S, DelGiudice P, Montagne N, Schapiro JM, Dellamonica P (2000) "Importance of protease inhibitor plasma levels in HIV-infected patients treated with genotypic-guided therapy: pharmacological data from the Viradapt Study." Aids, 14, p. 1333-9
  3. (2001) "Product Information. Kaletra (lopinavir-ritonavir)." Abbott Pharmaceutical
  4. Liedtke MD, Lockhart SM, Rathbun RC (2004) "Anticonvulsant and antiretroviral interactions." Ann Pharmacother, 38, p. 482-9
  5. Lim ML, Min SS, Eron JJ, et al. (2004) "Coadministration of lopinavir/ritonavir and phenytoin results in two-way drug interaction through cytochrome P-450 induction." J Acquir Immune Defic Syndr, 36, p. 1034-40
View all 5 references

Switch to consumer interaction data

Drug and food interactions

Moderate

ritonavir food

Applies to: AccessPak for HIV PEP Expanded with Kaletra (emtricitabine / lopinavir / ritonavir / tenofovir)

ADJUST DOSING INTERVAL: Administration with food may modestly affect the bioavailability of ritonavir from the various available formulations. When the oral solution was given under nonfasting conditions, peak ritonavir concentrations decreased 23% and the extent of absorption decreased 7% relative to fasting conditions. Dilution of the oral solution (within one hour of dosing) with 240 mL of chocolate milk or a nutritional supplement (Advera or Ensure) did not significantly affect the extent and rate of ritonavir absorption. When a single 100 mg dose of the tablet was administered with a high-fat meal (907 kcal; 52% fat, 15% protein, 33% carbohydrates), approximately 20% decreases in mean peak concentration (Cmax) and systemic exposure (AUC) were observed relative to administration after fasting. Similar decreases in Cmax and AUC were reported when the tablet was administered with a moderate-fat meal. In contrast, the extent of absorption of ritonavir from the soft gelatin capsule formulation was 13% higher when administered with a meal (615 KCal; 14.5% fat, 9% protein, and 76% carbohydrate) relative to fasting.

MANAGEMENT: Ritonavir should be taken with meals to enhance gastrointestinal tolerability.

References

  1. (2001) "Product Information. Norvir (ritonavir)." Abbott Pharmaceutical

Switch to consumer interaction data

Moderate

lopinavir food

Applies to: AccessPak for HIV PEP Expanded with Kaletra (emtricitabine / lopinavir / ritonavir / tenofovir)

ADJUST DOSING INTERVAL: Food significantly increases the bioavailability of lopinavir from the oral solution formulation of lopinavir-ritonavir. Relative to fasting, administration of lopinavir-ritonavir oral solution with a moderate-fat meal (500 to 682 Kcal; 23% to 25% calories from fat) increased lopinavir peak plasma concentration (Cmax) and systemic exposure (AUC) by 54% and 80%, respectively, whereas administration with a high-fat meal (872 Kcal; 56% from fat) increased lopinavir Cmax and AUC by 56% and 130%, respectively. No clinically significant changes in Cmax and AUC were observed following administration of lopinavir-ritonavir tablets under fed conditions versus fasted conditions. Relative to fasting, administration of a single 400 mg-100 mg dose (two 200 mg-50 mg tablets) with a moderate-fat meal (558 Kcal; 24.1% calories from fat) increased lopinavir Cmax and AUC by 17.6% and 26.9%, respectively, while administration with a high-fat meal (998 Kcal; 51.3% from fat) increased lopinavir AUC by 18.9% but not Cmax. Relative to fasting, ritonavir Cmax and AUC also increased by 4.9% and 14.9%, respectively, with the moderate-fat meal and 10.3% and 23.9%, respectively, with the high-fat meal.

MANAGEMENT: Lopinavir-ritonavir oral solution should be taken with meals to enhance bioavailability and minimize pharmacokinetic variability. Lopinavir-ritonavir tablets may be taken without regard to meals.

References

  1. (2001) "Product Information. Kaletra (lopinavir-ritonavir)." Abbott Pharmaceutical

Switch to consumer interaction data

Moderate

dabrafenib food

Applies to: dabrafenib

ADJUST DOSING INTERVAL: Food may reduce as well as delay the absorption of dabrafenib. In study subjects, administration of dabrafenib with a high-fat meal decreased peak plasma concentration (Cmax) and systemic exposure (AUC) by 51% and 31%, respectively, and delayed median Tmax by approximately 3.6 hours compared to administration in the fasted state.

MANAGEMENT: Dabrafenib should be taken at least 1 hour before or 2 hours after a meal.

References

  1. (2013) "Product Information. Tafinlar (dabrafenib)." GlaxoSmithKline

Switch to consumer interaction data

Minor

tenofovir food

Applies to: AccessPak for HIV PEP Expanded with Kaletra (emtricitabine / lopinavir / ritonavir / tenofovir)

Food enhances the oral absorption and bioavailability of tenofovir, the active entity of tenofovir disoproxil fumarate. According to the product labeling, administration of the drug following a high-fat meal increased the mean peak plasma concentration (Cmax) and area under the concentration-time curve (AUC) of tenofovir by approximately 14% and 40%, respectively, compared to administration in the fasting state. However, administration with a light meal did not significantly affect the pharmacokinetics of tenofovir compared to administration in the fasting state. Food delays the time to reach tenofovir Cmax by approximately 1 hour. Tenofovir disoproxil fumarate may be administered without regard to meals.

References

  1. (2001) "Product Information. Viread (tenofovir)." Gilead Sciences

Switch to consumer interaction data

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Loading...
QR code containing a link to this page

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.