Skip to main content

Drug Interaction Report

18 potential interactions and/or warnings found for the following 6 drugs:

Filter by interaction and/or warning

Interactions between your drugs

Major

methotrexate nabumetone

Applies to: methotrexate, nabumetone

MONITOR CLOSELY: Coadministration with nonsteroidal anti-inflammatory drugs (NSAIDs) may increase the plasma concentrations and toxicities of methotrexate. The proposed mechanism is NSAID inhibition of the renal elimination of methotrexate and its metabolite, 7-hydroxymethotrexate, although data from pharmacokinetic studies are inconsistent and conflicting. Displacement of methotrexate binding to serum albumin by certain NSAIDs may also play a secondary role. Unexpectedly severe and sometimes fatal bone marrow suppression, aplastic anemia, gastrointestinal toxicity, and nephrotoxicity have been reported during concomitant administration of methotrexate with NSAIDs. The risk is greatest in patients receiving high dosages of methotrexate and those with renal impairment. In clinical studies, methotrexate at dosages of 7.5 to 15 mg/week has been used without apparent problems in patients with rheumatoid arthritis who also received constant dosage regimens of NSAIDs. However, there have been occasional reports of stomatitis, pneumonitis, bone marrow toxicity, and fatality in patients receiving low-dose weekly methotrexate with daily NSAIDs.

MANAGEMENT: NSAIDs should generally not be administered prior to or concomitantly with high dosages of methotrexate, such as those used to treat osteosarcoma. Caution should be exercised when NSAIDs are administered concomitantly with lower dosages of methotrexate. Close monitoring for signs and symptoms of bone marrow suppression, nephrotoxicity, and hepatotoxicity is recommended during treatment. Patients should be advised to contact their physician if they develop stomatitis, nausea, vomiting, diarrhea, rash, anorexia, jaundice, dark urine, dry cough, shortness of breath, and/or signs and symptoms of myelosuppression such as pallor, dizziness, fatigue, lethargy, fainting, easy bruising or bleeding, fever, chills, sore throat, body aches, and other influenza-like symptoms. Patients should also be counseled to avoid any other over-the-counter NSAID products.

References

  1. Skeith KJ, Russell AS, Jamali F, Coates J, Friedman H (1990) "Lack of significant interaction between low dose methotrexate and ibuprofen or flurbiprofen in patients with arthritis." J Rheumatol, 17, p. 1008-10
  2. Bloom EJ, Ignoffo RJ, Reis CA, Cadman E (1986) "Delayed clearance (CL) of methotrexate (MTX) associated with antibiotics and antiinflammatory agents." Clin Res, 34, a560
  3. Thyss A, Milano G, Kubar J, Namer M, Schneider M (1986) "Clinical and pharmacokinetic evidence of a life-threatening interaction between methotrexate and ketoprofen." Lancet, 1, p. 256-8
  4. Maiche AG (1986) "Acute renal failure due to concomitant action of methotrexate and indomethacin." Lancet, 1, p. 1390
  5. Singh RR, Malaviya AN, Pandey JN, Guleria JS (1986) "Fatal interaction between methotrexate and naproxen." Lancet, 1, p. 1390
  6. Ng HW, Macfarlane AW, Graham RM, Verbov JL (1987) "Near fatal drug interactions with methotrexate given for psoriasis." Br Med J (Clin Res Ed), 295, p. 752-3
  7. Dupuis LL, Koren G, Shore A, Silverman ED, Laxer RM (1990) "Methotrexate-nonsteroidal antiinflammatory drug interaction in children with arthritis." J Rheumatol, 17, p. 1469-73
  8. Frenia ML, Long KS (1992) "Methotrexate and nonsteroidal antiinflammatory drug interactions." Ann Pharmacother, 26, p. 234-7
  9. Stewart CF, Fleming RA, Germain BF, Seleznick MJ, Evans WE (1991) "Aspirin alters methotrexate disposition in rheumatoid arthritis patients." Arthritis Rheum, 34, p. 1514-20
  10. Stewart CF, Fleming RA, Arkin CR, Evans WE (1990) "Coadministration of naproxen and low-dose methotrexate in patients with rheumatoid arthritis." Clin Pharmacol Ther, 47, p. 540-6
  11. Mayall B, Poggi G, Parkin JD (1991) "Neutropenia due to low-dose methotrexate therapy for psoriasis and rheumatoid arthritis may be fatal." Med J Aust, 155, p. 480-4
  12. Ellison NM, Servi RJ (1985) "Acute renal failure and death following sequential intermediate-dose methotrexate and 5-FU: a possible adverse effect due to concomitant indomethacin administration." Cancer Treat Rep, 69, p. 342-3
  13. Kraus A, Alarcon-Segovia D (1991) "Low dose MTX and NSAID induced "mild" renal insufficiency and severe neutropenia." J Rheumatol, 18, p. 1274
  14. Adams JD, Hunter GA (1976) "Drug interaction in psoriasis." Australas J Dermatol, 17, p. 39-40
  15. Baker H (1970) "Intermittent high dose oral methotrexate therapy in psoriasis." Br J Dermatol, 82, p. 65-9
  16. Tracy TS, Krohn K, Jones DR, Bradley JD, Hall SD, Brater DC (1992) "The effects of a salicylate, ibuprofen, and naproxen on the disposition of methotrexate in patients with rheumatoid arthritis." Eur J Clin Pharmacol, 42, p. 121-5
  17. Anaya JM, Fabre D, Bressolle F, Bologna C, Alric R, Cocciglio M, Dropsy R, Sany J (1994) "Effect of etodolac on methotrexate pharmacokinetics in patients with rheumatoid arthritis." J Rheumatol, 21, p. 203-8
  18. Tracy TS, Worster T, Bradley JD, Greene PK, Brater DC (1994) "Methotrexate disposition following concomitant administration of ketoprofen, piroxicam and flurbiprofen in patients with rheumatoid arthritis." Br J Clin Pharmacol, 37, p. 453-6
  19. Brouwers JRBJ, Desmet PAGM (1994) "Pharmacokinetic-pharmacodynamic drug interactions with nonsteroidal anti-inflammatory drugs." Clin Pharmacokinet, 27, p. 462-85
  20. Combe B, Edno L, Lafforgue P, Bologna C, Bernard JC, Acquaviva P, Sany J (1995) "Total and free methotrexate pharmacokinetics, with and without piroxicam, in rheumatoid arthritis patients." Br J Rheumatol, 34, p. 421-8
  21. Wallace CA, Smith AL, Sherry DD (1993) "Pilot investigation of naproxen/methotrexate interaction in patients with juvenile rheumatoid arthritis." J Rheumatol, 20, p. 1764-8
  22. Franck H, Rau R, Herborn G (1996) "Thrombocytopenia in patients with rheumatoid arthritis on long-term treatment with low dose methotrexate." Clin Rheumatol, 15, p. 163-7
  23. (2001) "Product Information. Arthrotec (diclofenac-misoprostol)." Searle
  24. Karim A, Tolbert DS, Hunt TL, Hubbard RC, Harper KM, Geis GS (1999) "Celecoxib, a specific COX-2 inhibitor, has no significant effect on methotrexate pharmacokinetics in patients with rheumatoid arthritis." J Rheumatol, 26, p. 2539-43
  25. Matheson AJ, Figgitt DP (2001) "Rofecoxib - A review of its use in the management of osteoarthritis, acute pain and rheumatoid arthritis." Drugs, 61, p. 833-65
  26. Schwartz JI, Agrawal NG, Wong PH, et al. (2001) "Lack of pharmacokinetic interaction between rofecoxib and methotrexate in rheumatoid arthritis patients." J Clin Pharmacol, 41, p. 1120-30
  27. Hartmann SN, Rordorf CM, Milosavljev S, et al. (2004) "Lumiracoxib does not affect methotrexate pharmacokinetics in rheumatoid arthritis patients." Ann Pharmacother, 38, p. 1582-7
  28. Vakily M, Amer F, Kukulka MJ, Andhivarothai N (2005) "Coadministration of lansoprazole and naproxen does not affect the pharmacokinetic profile of methotrexate in adult patients with rheumatoid arthritis." J Clin Pharmacol, 45, p. 1179-86
  29. EMEA. European Medicines Agency (2007) EPARs. European Union Public Assessment Reports. http://www.ema.europa.eu/ema/index.jsp?curl=pages/includes/medicines/medicines_landingpage.jsp&mid
View all 29 references

Switch to consumer interaction data

Major

buPROPion escitalopram

Applies to: Wellbutrin XL (bupropion), Lexapro (escitalopram)

MONITOR CLOSELY: The use of bupropion is associated with a dose-related risk of seizures. The risk may be further increased when coadministered with other agents that can reduce the seizure threshold, including selective serotonin reuptake inhibitors (SSRIs) such as citalopram and escitalopram. The estimated incidence of seizures is approximately 0.4% for immediate-release bupropion hydrochloride at dosages between 300 to 450 mg/day (equivalent to 348 to 522 mg/day of bupropion hydrobromide), but increases almost tenfold between 450 mg and 600 mg/day (equivalent to 522 and 696 mg/day of bupropion hydrobromide). Data for sustained-release (SR) bupropion hydrochloride revealed a seizure incidence of approximately 0.1% at dosages up to 300 mg/day and 0.4% at 400 mg/day. Likewise, in clinical trials, an overall seizure incidence of approximately 0.1% has been reported with extended-release (XL) bupropion hydrochloride at dosages up to 450 mg/day and approximately 0.39% at 450 mg/day. The 0.4% seizure incidence may exceed that of other marketed antidepressants by as much as 4-fold.

Pharmacokinetically, bupropion may increase the plasma concentrations of citalopram. The mechanism of interaction has not been described. Unlike other SSRIs, citalopram is not known to be significantly metabolized by CYP450 2D6, which is inhibited by bupropion and its metabolite, hydroxybupropion. In one study, bupropion increased citalopram peak plasma concentration (Cmax) and systemic exposure (AUC) by 30% and 40%, respectively. Citalopram did not affect the pharmacokinetics of bupropion and its three active metabolites. The interaction has not been studied with escitalopram.

MANAGEMENT: Extreme caution is advised if bupropion is administered with any substance that can reduce the seizure threshold, particularly in the elderly and in patients with a history of seizures or other risk factors for seizures (e.g., head trauma; brain tumor; severe hepatic cirrhosis; metabolic disorders; CNS infections; excessive use of alcohol or sedatives; addiction to opiates, cocaine, or stimulants; diabetes treated with oral hypoglycemic agents or insulin). Bupropion as well as concomitant medications should be initiated at the lower end of the dosage range and titrated gradually as needed and as tolerated. The maximum recommended dosage for the specific bupropion formulation should not be exceeded. Clinical and laboratory monitoring may be appropriate for citalopram or escitalopram whenever bupropion is added to or withdrawn from therapy. Bupropion should be discontinued and not restarted in patients who experience a seizure during treatment.

References

  1. Rosenstein DL, Nelson JC, Jacobs SC (1993) "Seizures associated with antidepressants: a review." J Clin Psychiatry, 54, p. 289-99
  2. James WA, Lippmann S (1991) "Bupropion: overview and prescribing guidelines in depression." South Med J, 84, p. 222-4
  3. Johnston JA, Lineberry CG, Ascher JA, et al. (1991) "A 102-center prospective study of seizure in association with bupropion." J Clin Psychiatry, 52, p. 450-6
  4. Gittelman DK, Kirby MG (1993) "A seizure following bupropion overdose." J Clin Psychiatry, 54, p. 162
  5. Sheehan DV, Welch JB, Fishman SM (1986) "A case of bupropion-induced seizure." J Nerv Ment Dis, 174, p. 496-8
  6. Dufresne RL, Weber SS, Becker RE (1984) "Bupropion hydrochloride." Drug Intell Clin Pharm, 18, p. 957-64
  7. (2001) "Product Information. Wellbutrin (bupropion)." Glaxo Wellcome
  8. Storrow AB (1994) "Bupropion overdose and seizure." Am J Emerg Med, 12, p. 183-4
  9. (2001) "Product Information. Wellbutrin SR (bupropion)." Glaxo Wellcome
  10. (2001) "Product Information. Zyban (bupropion)." Glaxo Wellcome
  11. Guzey C, Norstrom A, Spigset O (2002) "Change from the CYP2D6 extensive metabolizer to the poor metabolizer phenotype during treatment with bupropion." Ther Drug Monit, 24, p. 436-7
  12. Pisani F, Spina E, Oteri G (1999) "Antidepressant drugs and seizure susceptibility: from in vitro data to clinical practice." Epilepsia, 40(Suppl 10), S48-56
  13. (2003) "Product Information. Wellbutrin XL (bupropion)." GlaxoSmithKline
  14. Canadian Pharmacists Association (2006) e-CPS. http://www.pharmacists.ca/function/Subscriptions/ecps.cfm?link=eCPS_quikLink
  15. (2009) "Product Information. Aplenzin (bupropion)." sanofi-aventis
View all 15 references

Switch to consumer interaction data

Major

methotrexate dexlansoprazole

Applies to: methotrexate, Dexilant (dexlansoprazole)

MONITOR CLOSELY: Coadministration with proton pump inhibitors (PPIs) may increase the serum concentrations of methotrexate (MTX) and its potentially active 7-hydroxy metabolite. The proposed mechanism is PPI inhibition of the active tubular secretion of MTX and 7-hydroxymethotrexate via renal H+/K+ ATPase pumps. Inhibition of the breast cancer resistance protein (BCRP)-mediated transport of methotrexate and 7-hydroxymethotrexate by the proton pump inhibitors has also been suggested. The interaction was suspected in 2 case reports involving omeprazole and high-dose MTX cycles, where elimination of MTX was significantly delayed during cycles with omeprazole but became normal during subsequent cycles after omeprazole was discontinued or substituted with ranitidine. In another case, coadministration of pantoprazole and low-dose pulse MTX (15 mg IM once a week) resulted in severe myalgia and bone pain for several days following each of five MTX injections. The symptoms subsided dramatically and eventually disappeared after pantoprazole was replaced with ranitidine. A subsequent rechallenge led to reappearance of symptoms. Although the pharmacokinetics of MTX were not affected, systemic exposure (AUC) of 7-hydroxymethotrexate was significantly increased by 70% and half-life was doubled in the presence of pantoprazole.

MANAGEMENT: Proton pump inhibitor therapy should preferably be stopped several days prior to administration of methotrexate. In addition, it is not generally recommended to use proton pump inhibitors with high-dose methotrexate therapy, particularly in the presence of renal impairment. If concomitant use is necessary, clinicians should consider the potential for interaction and closely monitor methotrexate serum levels and toxicity. Use of an H2 antagonist may also be an appropriate alternative. It is not known if the interaction occurs with low, oral doses of methotrexate used to treat rheumatoid arthritis.

References

  1. (2002) "Product Information. Methotrexate (methotrexate)." Lederle Laboratories
  2. Reid T, Yuen A, Catolico M, Carlson RW (1993) "Impact of omeprazole on the plasma clearance of methotrexate." Cancer Chemother Pharmacol, 33, p. 82-4
  3. Beorlegui B, Aldaz A, Ortega A, Aquerreta I, Sierrasesumega L, Giraldez J (2000) "Potential interaction between methotrexate and omeprazole/." Ann Pharmacother, 34, p. 1024-7
  4. Troger U, Stotzel B, Martens-Lobenhoffer J, Gollnick H, Meyer FP (2002) "Severe myalgia from an interaction between treatments with pantoprazole and methotrexate." BMJ, 324, p. 1497
  5. Cerner Multum, Inc. "Australian Product Information."
  6. Breedveld P, Zelcer N, Pluim D, et al. (2004) "Mechanism of the Pharmacokinetic Interaction between Methotrexate and Benzimidazoles; Potential Role for Breast Cancer Resistance Protein in Clinical Drug-Drug Interactions." Cancer Res, 64, p. 5804-11
View all 6 references

Switch to consumer interaction data

Moderate

methotrexate buPROPion

Applies to: methotrexate, Wellbutrin XL (bupropion)

GENERALLY AVOID: Coadministration of methotrexate with other agents known to induce hepatotoxicity may potentiate the risk of liver injury. Methotrexate, especially at higher dosages or during prolonged treatment, has been associated with severe hepatotoxicity including acute hepatitis, chronic fibrosis, cirrhosis, and fatal liver failure.

MANAGEMENT: The risk of hepatic injury should be considered when methotrexate is used with other potentially hepatotoxic agents (e.g., acetaminophen; alcohol; androgens and anabolic steroids; antituberculous agents; azole antifungal agents; ACE inhibitors; cyclosporine (high dosages); disulfiram; endothelin receptor antagonists; interferons; ketolide and macrolide antibiotics; kinase inhibitors; minocycline; nonsteroidal anti-inflammatory agents; nucleoside reverse transcriptase inhibitors; proteasome inhibitors; retinoids; sulfonamides; tamoxifen; thiazolidinediones; tolvaptan; vincristine; zileuton; anticonvulsants such as carbamazepine, hydantoins, felbamate, and valproic acid; lipid-lowering medications such as fenofibrate, lomitapide, mipomersen, niacin, and statins; herbals and nutritional supplements such as black cohosh, chaparral, comfrey, DHEA, kava, pennyroyal oil, and red yeast rice). Baseline and periodic monitoring of hepatic function is recommended, while liver biopsy may be warranted during long-term use of methotrexate. Patients should be advised to seek medical attention if they experience potential signs and symptoms of hepatotoxicity such as fever, rash, itching, anorexia, nausea, vomiting, fatigue, right upper quadrant pain, dark urine, pale stools, and jaundice.

References

  1. (2002) "Product Information. Methotrexate (methotrexate)." Lederle Laboratories
  2. Cerner Multum, Inc. "UK Summary of Product Characteristics."
  3. (2023) "Product Information. Methotrexate (methotrexate)." Hospira Inc

Switch to consumer interaction data

Moderate

buPROPion spironolactone

Applies to: Wellbutrin XL (bupropion), spironolactone

MONITOR: Many psychotherapeutic and CNS-active agents (e.g., anxiolytics, sedatives, hypnotics, antidepressants, antipsychotics, opioids, alcohol, muscle relaxants) exhibit hypotensive effects, especially during initiation of therapy and dose escalation. Coadministration with antihypertensives and other hypotensive agents, in particular vasodilators and alpha-blockers, may result in additive effects on blood pressure and orthostasis.

MANAGEMENT: Caution and close monitoring for development of hypotension is advised during coadministration of these agents. Some authorities recommend avoiding alcohol in patients receiving vasodilating antihypertensive drugs. Patients should be advised to avoid rising abruptly from a sitting or recumbent position and to notify their physician if they experience dizziness, lightheadedness, syncope, orthostasis, or tachycardia.

References

  1. Sternbach H (1991) "Fluoxetine-associated potentiation of calcium-channel blockers." J Clin Psychopharmacol, 11, p. 390-1
  2. Shook TL, Kirshenbaum JM, Hundley RF, Shorey JM, Lamas GA (1984) "Ethanol intoxication complicating intravenous nitroglycerin therapy." Ann Intern Med, 101, p. 498-9
  3. Feder R (1991) "Bradycardia and syncope induced by fluoxetine." J Clin Psychiatry, 52, p. 139
  4. Ellison JM, Milofsky JE, Ely E (1990) "Fluoxetine-induced bradycardia and syncope in two patients." J Clin Psychiatry, 51, p. 385-6
  5. Rodriguez de la Torre B, Dreher J, Malevany I, et al. (2001) "Serum levels and cardiovascular effects of tricyclic antidepressants and selective serotonin reuptake inhibitors in depressed patients." Ther Drug Monit, 23, p. 435-40
  6. Cerner Multum, Inc. "Australian Product Information."
  7. Pacher P, Kecskemeti V (2004) "Cardiovascular side effects of new antidepressants and antipsychotics: new drugs, old concerns?" Curr Pharm Des, 10, p. 2463-75
  8. Andrews C, Pinner G (1998) "Postural hypotension induced by paroxetine." BMJ, 316, p. 595
View all 8 references

Switch to consumer interaction data

Moderate

nabumetone spironolactone

Applies to: nabumetone, spironolactone

MONITOR: Concomitant use of nonsteroidal anti-inflammatory drugs (NSAIDs) and diuretics may adversely affect renal function due to NSAID inhibition of the renal synthesis of prostaglandins that help maintain renal perfusion in dehydrated states. The risk may be increased in patients on dietary sodium restriction. At the same time, hypotensive effect of the diuretics may be reduced because inhibition of prostaglandins can lead to unopposed pressor activity and, consequently, elevation in blood pressure. Natriuretic and diuretic effects may also be reduced, as NSAIDs have been reported to cause sodium and water retention, which may account for the increased risk of congestive heart failure associated with the combination. One study showed an increase in the incidence density of congestive heart failure (in patients over 55 years of age) from 9.3 per 1,000 person-years in patients on diuretics to 23.3 per 1,000 person-years in patients on both diuretic and NSAID therapy. NSAIDs may also increase the risk of hyperkalemia associated with potassium-sparing diuretics.

MANAGEMENT: In patients receiving both diuretic and NSAID therapy, management consists of avoiding dehydration and carefully monitoring the patient's renal function and blood pressure. If renal insufficiency or hyperkalemia develops, both drugs should be discontinued until the condition is corrected.

References

  1. Allan SG, Knox J, Kerr F (1981) "Interaction between diuretics and indomethacin." Br Med J, 283, p. 1611
  2. McCarthy JT, Torres VE, Romero JC, et al. (1982) "Acute intrinsic renal failure induced by indomethacin." Mayo Clin Proc, 57, p. 289-96
  3. Favre L, Glasson P, Vallotton MB (1982) "Reversible acute renal failure from combined triamterene and indomethacin." Ann Intern Med, 96, p. 317-20
  4. Poe TE, Scott RB, Keith JF Jr (1983) "Interaction of indomethacin with furosemide." J Fam Pract, 16, p. 610-6
  5. Ahmad S (1984) "Indomethacin-bumetanide interaction: an alert." Am J Cardiol, 54, p. 246-7
  6. Dixey JJ, Noormohamed FH, Lant AF, Brewerton DA (1987) "The effects of naproxen and sulindac on renal function and their interaction with hydrochlorothiazide and piretanide in man." Br J Clin Pharmacol, 23, p. 55-63
  7. Brater DC, Fox WR, Chennavasin P (1981) "Interaction studies with bumetanide and furosemide: effects of probenecid and of indomethacin on response to bumetanide in man." J Clin Pharmacol, 21, p. 647-53
  8. Smith DE, Brater DC, Lin ET, Benet LZ (1979) "Attenuation of furosemide's diuretic effect by indomethacin: pharmacokinetic evaluation." J Pharmacokinet Biopharm, 7, p. 265-74
  9. Mor R, Pitlik S, Rosenfeld JB (1983) "Indomethacin- and Moduretic--induced hyperkalemia." Isr J Med Sci, 19, p. 535-7
  10. Kaufman J, Hamburger R, Matheson J, Flamenbaum W (1981) "Bumetanide-induced diuresis and natriuresis: effect of prostaglandin synthetase inhibition." J Clin Pharmacol, 21, p. 663-7
  11. Favre L, Glasson P, Riondel A, Vallotton MB (1983) "Interaction of diuretics and non-steroidal anti-inflammatory drugs in man." Clin Sci, 64, p. 407-15
  12. Pedrinelli R, Magagna A, Arzilli F, et al. (1980) "Influence of indomethacin on the natriuretic and renin-stimulating effect of bumetanide in essential hypertension." Clin Pharmacol Ther, 28, p. 722-31
  13. Weinberg MS, Quigg RJ, Salant DJ, Bernard DB (1985) "Anuric renal failure precipitated by indomethacin and triamterene." Nephron, 40, p. 216-8
  14. Furst DE (1988) "Clinically important interactions of nonsteroidal antiinflammatory drugs with other medications." J Rheumatol Suppl, 17, p. 58-62
  15. Gehr T, Sica DA, Steigler BW, Marshall C (1990) "Interaction of triamterene-hydrochlorothiazide (T-H) and ibuprofen (I)." Clin Pharmacol Ther, 47, p. 200
  16. (2002) "Product Information. HydroDIURIL (hydrochlorothiazide)." Merck & Co., Inc
  17. Watkins J, Abbot EC, Hensby CN, Webster J, Dollery CT (1980) "Attenuation of hypotensive effect of propranolol and thiazide diuretics by indomethacin." Br Med J, 281, p. 702-5
  18. Ripley EB, Gehr TW, Wallace H, Wade J, Kish C, Sica DA (1994) "The effect of nonsteroidal agents (NSAIDs) on the pharmacokinetics and pharmacodynamics of metolazone." Int J Clin Pharmacol Ther, 32, p. 12-8
  19. Desaulles E, Schwartz J (1979) "A comparative study of the action of frusemide and methyclothiazide on renin release by rat kidney slices and the interaction with indomethacin." Br J Pharmacol, 65, p. 193-6
  20. Muller FO, Schall R, Devaal AC, Groenewoud G, Hundt HKL, Middle MV (1995) "Influence of meloxicam on furosemide pharmacokinetics and pharmacodynamics in healthy volunteers." Eur J Clin Pharmacol, 48, p. 247-51
  21. Gurwitz JH, Everitt DE, Monane M, et al. (1996) "The impact of ibuprofen on the efficacy of antihypertensive treatment with hydrochlorothiazide in elderly persons." J Gerontol A Biol Sci Med Sci, 51, m74-9
  22. Heerdink ER, Leufkens HG, Herings RM, Ottervanger JP, Stricker BH, Bakker A (1998) "NSAIDs associated with increased risk of congestive heart failure in elderly patients taking diuretics." Arch Intern Med, 158, p. 1108-12
  23. Leary WP, Reyes AJ (1984) "Drug interactions with diuretics." S Afr Med J, 65, p. 455-61
  24. Bennett WM (1997) "Drug interactions and consequences of sodium restriction." Am J Clin Nutr, 65, S678-81
  25. Marcy TR, Ripley TL (2006) "Aldosterone antagonists in the treatment of heart failure." Am J Health Syst Pharm, 63, p. 49-58
  26. Perazella MA (2000) "Drug-induced hyperkalemia: old culprits and new offenders." Am J Med, 109, p. 307-14
View all 26 references

Switch to consumer interaction data

Moderate

nabumetone escitalopram

Applies to: nabumetone, Lexapro (escitalopram)

MONITOR: Serotonin reuptake inhibitors (SRIs) may potentiate the risk of bleeding in patients treated with ulcerogenic agents and agents that affect hemostasis such as anticoagulants, platelet inhibitors, thrombin inhibitors, thrombolytic agents, or agents that commonly cause thrombocytopenia. The tricyclic antidepressant, clomipramine, is also a strong SRI and may interact similarly. Serotonin release by platelets plays an important role in hemostasis, thus SRIs may alter platelet function and induce bleeding. Published case reports have documented the occurrence of bleeding episodes in patients treated with psychotropic agents that interfere with serotonin reuptake. Bleeding events related to SRIs have ranged from ecchymosis, hematoma, epistaxis, and petechiae to life-threatening hemorrhages. Additional epidemiological studies have confirmed the association between use of these agents and the occurrence of upper gastrointestinal bleeding, and concurrent use of NSAIDs or aspirin was found to potentiate the risk. Preliminary data also suggest that there may be a pharmacodynamic interaction between SSRIs and oral anticoagulants that can cause an increased bleeding diathesis. Concomitant administration of paroxetine and warfarin, specifically, has been associated with an increased frequency of bleeding without apparent changes in the disposition of either drug or changes in the prothrombin time. Bleeding has also been reported with fluoxetine and warfarin, while citalopram and sertraline have been reported to prolong the prothrombin time of patients taking warfarin by about 5% to 8%. In the RE-LY study (Randomized Evaluation of Long-term anticoagulant therapy), SRIs were associated with an increased risk of bleeding in all treatment groups.

MANAGEMENT: Caution is advised if SRIs or clomipramine are used in combination with other drugs that affect hemostasis. Close clinical and laboratory observation for hematologic complications is recommended. Patients should be advised to promptly report any signs of bleeding to their physician, including pain, swelling, headache, dizziness, weakness, prolonged bleeding from cuts, increased menstrual flow, vaginal bleeding, nosebleeds, bleeding of gums from brushing, unusual bleeding or bruising, red or brown urine, or red or black stools.

References

  1. Aranth J, Lindberg C (1992) "Bleeding, a side effect of fluoxetine." Am J Psychiatry, 149, p. 412
  2. Claire RJ, Servis ME, Cram DL Jr (1991) "Potential interaction between warfarin sodium and fluoxetine." Am J Psychiatry, 148, p. 1604
  3. Yaryura-Tobias JA, Kirschen H, Ninan P, Mosberg HJ (1991) "Fluoxetine and bleeding in obsessive-compulsive disorder." Am J Psychiatry, 148, p. 949
  4. Humphries JE, Wheby MS, VandenBerg SR (1990) "Fluoxetine and the bleeding time." Arch Pathol Lab Med, 114, p. 727-8
  5. Alderman CP, Moritz CK, Ben-Tovim DI (1992) "Abnormal platelet aggregation associated with fluoxetine therapy." Ann Pharmacother, 26, p. 1517-9
  6. Ciraulo DA, Shader RI (1990) "Fluoxetine drug-drug interactions. II." J Clin Psychopharmacol, 10, p. 213-7
  7. (2001) "Product Information. Zoloft (sertraline)." Roerig Division
  8. Woolfrey S, Gammack NS, Dewar MS, Brown PJ (1993) "Fluoxetine-warfarin interaction." BMJ, 307, p. 241
  9. (2001) "Product Information. Prozac (fluoxetine)." Dista Products Company
  10. (2001) "Product Information. Effexor (venlafaxine)." Wyeth-Ayerst Laboratories
  11. Bannister SJ, Houser VP, Hulse JD, Kisicki JC, Rasmussen JG (1989) "Evaluation of the potential for interactions of paroxetine with diazepam, cimetidine, warfarin, and digoxin." Acta Psychiatr Scand Suppl, 350, p. 102-6
  12. (2001) "Product Information. Paxil (paroxetine)." GlaxoSmithKline
  13. Messiha FS (1993) "Fluoxetine - adverse effects and drug-drug interactions." J Toxicol Clin Toxicol, 31, p. 603-30
  14. Ottervanger JP, Stricker BH, Huls J, Weeda JN (1994) "Bleeding attributed to the intake of paroxetine." Am J Psychiatry, 151, p. 781-2
  15. (2001) "Product Information. Luvox (fluvoxamine)." Solvay Pharmaceuticals Inc
  16. Krivy J, Wiener J (1995) "Sertraline and platelet counts in idiopathic thrombocytopenia purpura." Lancet, 345, p. 132
  17. Skop BP, Brown TM (1996) "Potential vascular and bleeding complications of treatment with selective serotonin reuptake inhibitors." Psychosomatics, 37, p. 12-6
  18. Pai VB, Kelly MW (1996) "Bruising associated with the use of fluoxetine." Ann Pharmacother, 30, p. 786-8
  19. Alderman CP, Seshadri P, Ben-Tovim DI (1996) "Effects of serotonin reuptake inhibitors on hemostasis." Ann Pharmacother, 30, p. 1232-4
  20. Leung M, Shore R (1996) "Fluvoxamine-associated bleeding." Can J Psychiatry, 41, p. 604-5
  21. Dent LA, Orrock MW (1997) "Warfarin-fluoxetine and diazepam-fluoxetine interaction." Pharmacotherapy, 17, p. 170-2
  22. Ford MA, Anderson ML, Rindone JP, Jaskar DW (1997) "Lack of effect of fluoxetine on the hypoprothrombinemic response of warfarin." J Clin Psychopharmacol, 17, p. 110-2
  23. (2001) "Product Information. Celexa (citalopram)." Forest Pharmaceuticals
  24. de Abajo FJ, Rodriguez LA, Montero D (1999) "Association between selective serotonin reuptake inhibitors and upper gastrointestinal bleeding: population based case-control study." BMJ, 319, p. 1106-9
  25. de Abajo FJ, Jick H, Derby L, Jick S, Schmitz S (2000) "Intracranial haemorrhage and use of selective serotonin reuptake inhibitors." Br J Clin Pharmacol, 50, p. 43-7
  26. Settle EC (1998) "Antidepressant drugs: disturbing and potentially dangerous adverse effects." J Clin Psychiatry, 59 Suppl 16, p. 25-30
  27. Hergovich N, Aigner M, Eichler HG, Entlicher J, Drucker C, Jilma B (2000) "Paroxetine decreases platelet serotonin storage and platelet function in human beings." Clin Pharmacol Ther, 68, p. 435-42
  28. Layton D, Clark DWJ, Pearce GL, Shakir SAW (2001) "Is there an association between selective serotonin reuptake inhibitors and risk of abnormal bleeding? Results from a cohort study based on prescription event monitoring in England." Eur J Clin Pharmacol, 57, p. 167-76
  29. (2002) "Product Information. Lexapro (escitalopram)." Forest Pharmaceuticals
  30. de Maistre E, Allart C, Lecompte T, Bollaert PE (2002) "Severe bleeding associated with use of low molecular weight heparin and selective serotonin reuptake inhibitors." Am J Med, 113, p. 530-2
  31. Dalton SO, Johansen C, Mellemkjaer L, Norgard B, Sorensen HT, Olsen JH (2003) "Use of selective serotonin reuptake inhibitors and risk of upper gastrointestinal tract bleeding: a population-based cohort study." Arch Intern Med, 163, p. 59-64
  32. (2004) "Product Information. Cymbalta (duloxetine)." Lilly, Eli and Company
  33. Tata LJ, Fortun PJ, Hubbard RB, et al. (2005) "Does concurrent prescription of selective serotonin reuptake inhibitors and non-steroidal anti-inflammatory drugs substantially increase the risk of upper gastrointestinal bleeding?" Aliment Pharmacol Ther, 22, p. 175-81
  34. Cerner Multum, Inc. "Australian Product Information."
  35. (2008) "Product Information. Pristiq (desvenlafaxine)." Wyeth Laboratories
  36. (2009) "Product Information. Savella (milnacipran)." Forest Pharmaceuticals
  37. (2011) "Product Information. Viibryd (vilazodone)." Trovis Pharmaceuticals LLC
  38. (2013) "Product Information. Fetzima (levomilnacipran)." Forest Pharmaceuticals
  39. (2013) "Product Information. Brintellix (vortioxetine)." Takeda Pharmaceuticals America
View all 39 references

Switch to consumer interaction data

Moderate

spironolactone escitalopram

Applies to: spironolactone, Lexapro (escitalopram)

MONITOR: Coadministration with diuretics may potentiate the risk of hyponatremia associated with the use of selective serotonin reuptake inhibitors (SSRIs) and serotonin-norepinephrine reuptake inhibitors (SNRIs). The mechanism by which SSRIs and SNRIs produce hyponatremia has not been clearly established. In many cases, the hyponatremia appears to be secondary to the syndrome of inappropriate antidiuretic hormone secretion (SIADH). Cases with serum sodium lower than 110 mmol/L have been reported. These events are generally reversible following discontinuation of therapy and/or medical intervention. Elderly patients and patients taking diuretics or who are otherwise volume-depleted may be at greater risk of developing hyponatremia with SSRIs and SNRIs.

MONITOR: Antihypertensive agents such as diuretics may potentiate the orthostatic effect that is occasionally observed upon the initiation of SSRI or SNRI therapy. Syncope and orthostatic hypotension tend to occur within the first week of SNRI/SSRI therapy but can occur at any time during treatment, particularly after a dosage increase. The use of SSRIs or SNRIs may also cause sustained increases in blood pressure and heart rate, which may antagonize the therapeutic effects of antihypertensive medications. Cases of elevated blood pressure requiring immediate treatment have been reported in postmarketing experience.

MANAGEMENT: Caution is recommended if SSRIs or SNRIs are prescribed in combination with diuretics, particularly in the elderly. Patients should be advised to seek medical attention if they experience potential signs and symptoms of hyponatremia such as nausea, vomiting, headache, malaise, lethargy, irritability, difficulty concentrating, memory impairment, confusion, weakness, muscle spasm, and unsteadiness (which may lead to falls). More severe and/or acute cases may include hallucination, syncope, seizure, coma, respiratory arrest, and death. Discontinuation of SSRI/SNRI therapy should be considered in patients who develop symptomatic hyponatremia, and appropriate medical intervention instituted as necessary. Patients should also have their blood pressure and pulse monitored before and during SSRI/SNRI therapy, especially during the first few weeks and following a dosage increase. Patients should be advised to avoid rising abruptly from a sitting or recumbent position and to notify their doctor if they experience dizziness, lightheadedness, syncope, orthostasis, or tachycardia. Patients should also avoid driving or operating hazardous machinery until they know how the medications affect them. Dose reduction or drug discontinuation should be considered in patients who experience a sustained increase in blood pressure or pulse rate during SSRI or SNRI therapy.

References

  1. Hwang AS, Magraw RM (1989) "Syndrome of inappropriate secretion of antidiuretic hormone due to fluoxetine." Am J Psychiatry, 146, p. 399
  2. Vishwanath BM, Navalgund AA, Cusano W, Navalgund KA (1991) "Fluoxetine as a cause of SIADH." Am J Psychiatry, 148, p. 542-3
  3. Staab JP, Yerkes SA, Cheney EM, Clayton AH (1990) "Transient SIADH associated with fluoxetine." Am J Psychiatry, 147, p. 1569-70
  4. Cohen BJ, Mahelsky M, Adler L (1990) "More cases of SIADH with fluoxetine." Am J Psychiatry, 147, p. 948-9
  5. Spier SA, Frontera MA (1991) "Unexpected deaths in depressed medical inpatients treated with fluoxetine." J Clin Psychiatry, 52, p. 377-82
  6. Feder R (1991) "Bradycardia and syncope induced by fluoxetine." J Clin Psychiatry, 52, p. 139
  7. Ellison JM, Milofsky JE, Ely E (1990) "Fluoxetine-induced bradycardia and syncope in two patients." J Clin Psychiatry, 51, p. 385-6
  8. Kazal LA, Jr Hall DL, Miller LG, Noel ML (1993) "Fluoxetine-induced SIADH: a geriatric occurrence?" J Fam Pract, 36, p. 341-3
  9. Crews JR, Potts NL, Schreiber J, Lipper S (1993) "Hyponatremia in a patient treated with sertraline." Am J Psychiatry, 150, p. 1564
  10. Blacksten JV, Birt JA (1993) "Syndrome of inappropriate secretion of antidiuretic hormone secondary to fluoxetine." Ann Pharmacother, 27, p. 723-4
  11. (2001) "Product Information. Zoloft (sertraline)." Roerig Division
  12. (2001) "Product Information. Prozac (fluoxetine)." Dista Products Company
  13. (2001) "Product Information. Effexor (venlafaxine)." Wyeth-Ayerst Laboratories
  14. Chua TP, Vong SK (1993) "Hyponatraemia associated with paroxetine." BMJ, 306, p. 143
  15. Goddard C, Paton C (1992) "Hyponatraemia associated with paroxetine." BMJ, 305, p. 1332
  16. (2001) "Product Information. Paxil (paroxetine)." GlaxoSmithKline
  17. Doshi D, Borison R (1994) "Association of transient SIADH with sertraline." Am J Psychiatry, 151, p. 779-80
  18. Baliga RR, McHardy KC (1993) "Syndrome of inappropriate antidiuretic hormone secretion due to fluvoxamine therapy [published erratum appears in Br J Clin Pract 1993 May-Jun;47(3):119]." Br J Clin Pract, 47, p. 62-3
  19. (2001) "Product Information. Luvox (fluvoxamine)." Solvay Pharmaceuticals Inc
  20. Llorente MD, Gorelick M, Silverman MA (1994) "Sertraline as the cause of inappropriate antidiuretic hormone secretion." J Clin Psychiatry, 55, p. 543-4
  21. Thornton SL, Resch DS (1995) "SIADH associated with sertraline therapy." Am J Psychiatry, 152, p. 809
  22. Jackson C, Carson W, Markowitz J, Mintzer J (1995) "SIADH associated with fluoxetine and sertraline therapy." Am J Psychiatry, 152, p. 809-10
  23. Ayonrinde OT, Reutens SG, Sanfilippo FM (1995) "Paroxetine-induced SIADH." Med J Aust, 163, p. 390
  24. Kessler J, Samuels SC (1996) "Sertraline and hyponatremia." N Engl J Med, 335, p. 524
  25. Bradley ME, Foote EF, Lee EN, Merkle L (1996) "Sertraline-associated syndrome of inappropriate antidiuretic hormone: case report and review of the literature." Pharmacotherapy, 16, p. 680-3
  26. (1996) "Selective serotonin reuptake inhibitors and SIADH." Med J Aust, 164, p. 562
  27. Robinson D, Brooks J, Mahler E, Sheikh JI (1996) "SIADH--compulsive drinking or SSRI influence?" Ann Pharmacother, 30, p. 885
  28. Schattner A, Skurnik Y (1996) "Fluoxetine-induced SIADH." J Am Geriatr Soc, 44, p. 1413
  29. van Campen JP, Voets AJ (1996) "SIADH caused by paroxetine." Ann Pharmacother, 30, p. 1499
  30. Woo MH, Smythe MA (1997) "Association of SIADH with selective serotonin reuptake inhibitors." Ann Pharmacother, 31, p. 108-10
  31. Spigset O, hedenmalm K (1997) "Hyponatremia in relation to treatment with antidepressants: a survey of reports in the World Health Organization data base for spontaneous reporting of adverse drug reactions." Pharmacotherapy, 17, p. 348-52
  32. Bouman WP, Johnson H, TrescoliSerrano C, Jones RG (1997) "Recurrent hyponatremia associated with sertraline and lofepramine." Am J Psychiatry, 154, p. 580
  33. Girault C, Richard JC, Chevron V, Goulle JP, Droy JM, Bonmarchand G, Leroy J (1997) "Syndrome of inappropriate secretion of antidiuretic hormone in two elderly women with elevated serum fluoxetine." J Toxicol Clin Toxicol, 35, p. 93-5
  34. Ayonrinde OT, Sanfilippo FM (1997) "SSRI antidepressants and SIADH." Aust N Z J Psychiatry, 31, p. 306-7
  35. (2001) "Product Information. Celexa (citalopram)." Forest Pharmaceuticals
  36. Madhusoodanan S, Brenner R, Brafman I, Bogunovic O (1999) "Hyponatremia associated with paroxetine use." South Med J, 92, p. 843
  37. Odeh M, Seligmann H, Oliven A (1999) "Severe life-threatening hyponatremia during paroxetine therapy." J Clin Pharmacol, 39, p. 1290-1
  38. Odeh M, Beny A, Oliven A (2001) "Severe symptomatic hyponatremia during citalopram therapy." Am J Med Sci, 321, p. 159-60
  39. Rodriguez de la Torre B, Dreher J, Malevany I, et al. (2001) "Serum levels and cardiovascular effects of tricyclic antidepressants and selective serotonin reuptake inhibitors in depressed patients." Ther Drug Monit, 23, p. 435-40
  40. (2002) "Product Information. Lexapro (escitalopram)." Forest Pharmaceuticals
  41. Barclay TS, Lee AJ (2002) "Citalopram-associated SIADH." Ann Pharmacother, 36, p. 1558-63
  42. Rosner MH (2004) "Severe hyponatremia associated with the combined use of thiazide diuretics and selective serotonin reuptake inhibitors." Am J Med Sci, 327, p. 109-11
  43. (2004) "Product Information. Cymbalta (duloxetine)." Lilly, Eli and Company
  44. Jacob S, Spinler SA (2006) "Hyponatremia associated with selective serotonin-reuptake inhibitors in older adults." Ann Pharmacother, 40, p. 1618-22
  45. Covyeou JA, Jackson CW (2007) "Hyponatremia associated with escitalopram." N Engl J Med, 356, p. 94-5
  46. (2008) "Product Information. Pristiq (desvenlafaxine)." Wyeth Laboratories
  47. Fitzgerald MA (2008) "Hyponatremia associated with SSRI use in a 65-year-old woman." Nurse Pract, 33, p. 11-2
  48. Esposito P, Rampino T, Gregorini M, et al. (2008) "Severe symptomatic hyponatremia during sibutramine therapy: a case report." Am J Kidney Dis, 52, p. 137-9
  49. (2009) "Product Information. Savella (milnacipran)." Forest Pharmaceuticals
  50. Pacher P, Kecskemeti V (2004) "Cardiovascular side effects of new antidepressants and antipsychotics: new drugs, old concerns?" Curr Pharm Des, 10, p. 2463-75
  51. Andrews C, Pinner G (1998) "Postural hypotension induced by paroxetine." BMJ, 316, p. 595
  52. (2011) "Product Information. Viibryd (vilazodone)." Trovis Pharmaceuticals LLC
  53. (2013) "Product Information. Fetzima (levomilnacipran)." Forest Pharmaceuticals
  54. (2013) "Product Information. Brintellix (vortioxetine)." Takeda Pharmaceuticals America
View all 54 references

Switch to consumer interaction data

No other interactions were found between your selected drugs. However, this does not necessarily mean no other interactions exist. Always consult your healthcare provider.

Drug and food interactions

Moderate

methotrexate food

Applies to: methotrexate

MONITOR: Limited data suggest that consumption of greater than 180 mg/day of caffeine may interfere with the efficacy of methotrexate (MTX) in patients with rheumatoid arthritis. The exact mechanism of interaction is unknown but may be related to the antagonistic effect of caffeine on adenosine receptors, as anti-inflammatory properties of MTX is thought to result from the accumulation of adenosine. In a study of 39 patients treated with MTX 7.5 mg/week (without folate supplementation) for 3 months, patients with high caffeine intake (more than 180 mg/day) experienced significantly less improvement in morning stiffness and joint pain from baseline than patients with low caffeine intake (less than 120 mg/day). There were no significant differences between the responses of patients with moderate caffeine intake (120 to 180 mg/day) and those of the other 2 groups. In an interview of 91 patients treated with MTX, 26% of patients who discontinued the drug were regular coffee drinkers compared to only 2% of those still receiving the drug. Because treatment failure was the reason for MTX discontinuation in 80% of patients who discontinued, the investigators suggested that caffeine may have interfered with MTX efficacy.

MANAGEMENT: Until further information is available, the potential for interaction should be considered in patients who consume substantial amounts of caffeine and caffeine-containing foods and are prescribed methotrexate for rheumatoid arthritis. It may be appropriate to limit caffeine intake if an interaction is suspected in cases of treatment failure.

References

  1. Nesher G, Mates M, Zevin S (2003) "Effect of caffeine consumption on efficacy of methotrexate in rheumatoid arthritis." Arthritis Rheum, 48, p. 571-572

Switch to consumer interaction data

Moderate

buPROPion food

Applies to: Wellbutrin XL (bupropion)

GENERALLY AVOID: Excessive use or abrupt discontinuation of alcohol after chronic ingestion may precipitate seizures in patients receiving bupropion. Additionally, there have been rare postmarketing reports of adverse neuropsychiatric events or reduced alcohol tolerance in patients who drank alcohol during treatment with bupropion. According to one forensic report, a patient died after taking large doses of both bupropion and alcohol. It is uncertain whether a drug interaction was involved. Single-dose studies in healthy volunteers given bupropion and alcohol failed to demonstrate either a significant pharmacokinetic or pharmacodynamic interaction.

MANAGEMENT: The manufacturer recommends that alcohol consumption be minimized or avoided during bupropion treatment. The use of bupropion is contraindicated in patients undergoing abrupt discontinuation of alcohol.

References

  1. Posner J, Bye A, Jeal S, Peck AW, Whiteman P (1984) "Alcohol and bupropion pharmacokinetics in healthy male volunteers." Eur J Clin Pharmacol, 26, p. 627-30
  2. Ramcharitar V, Levine BS, Goldberger BA, Caplan YH (1992) "Bupropion and alcohol fatal intoxication: case report." Forensic Sci Int, 56, p. 151-6
  3. Hamilton MJ, Bush MS, Peck AW (1984) "The effect of bupropion, a new antidepressant drug, and alcohol and their interaction in man." Eur J Clin Pharmacol, 27, p. 75-80
  4. (2001) "Product Information. Wellbutrin (bupropion)." Glaxo Wellcome
View all 4 references

Switch to consumer interaction data

Moderate

escitalopram food

Applies to: Lexapro (escitalopram)

GENERALLY AVOID: Alcohol may potentiate some of the pharmacologic effects of CNS-active agents. Use in combination may result in additive central nervous system depression and/or impairment of judgment, thinking, and psychomotor skills.

MANAGEMENT: Patients receiving CNS-active agents should be warned of this interaction and advised to avoid or limit consumption of alcohol. Ambulatory patients should be counseled to avoid hazardous activities requiring complete mental alertness and motor coordination until they know how these agents affect them, and to notify their physician if they experience excessive or prolonged CNS effects that interfere with their normal activities.

References

  1. Warrington SJ, Ankier SI, Turner P (1986) "Evaluation of possible interactions between ethanol and trazodone or amitriptyline." Neuropsychobiology, 15, p. 31-7
  2. Gilman AG, eds., Nies AS, Rall TW, Taylor P (1990) "Goodman and Gilman's the Pharmacological Basis of Therapeutics." New York, NY: Pergamon Press Inc.
  3. (2012) "Product Information. Fycompa (perampanel)." Eisai Inc
  4. (2015) "Product Information. Rexulti (brexpiprazole)." Otsuka American Pharmaceuticals Inc
View all 4 references

Switch to consumer interaction data

Moderate

methotrexate food

Applies to: methotrexate

GENERALLY AVOID: Coadministration of methotrexate with other agents known to induce hepatotoxicity may potentiate the risk of liver injury. Methotrexate, especially at higher dosages or during prolonged treatment, has been associated with severe hepatotoxicity including acute hepatitis, chronic fibrosis, cirrhosis, and fatal liver failure.

MANAGEMENT: The risk of hepatic injury should be considered when methotrexate is used with other potentially hepatotoxic agents (e.g., acetaminophen; alcohol; androgens and anabolic steroids; antituberculous agents; azole antifungal agents; ACE inhibitors; cyclosporine (high dosages); disulfiram; endothelin receptor antagonists; interferons; ketolide and macrolide antibiotics; kinase inhibitors; minocycline; nonsteroidal anti-inflammatory agents; nucleoside reverse transcriptase inhibitors; proteasome inhibitors; retinoids; sulfonamides; tamoxifen; thiazolidinediones; tolvaptan; vincristine; zileuton; anticonvulsants such as carbamazepine, hydantoins, felbamate, and valproic acid; lipid-lowering medications such as fenofibrate, lomitapide, mipomersen, niacin, and statins; herbals and nutritional supplements such as black cohosh, chaparral, comfrey, DHEA, kava, pennyroyal oil, and red yeast rice). Baseline and periodic monitoring of hepatic function is recommended, while liver biopsy may be warranted during long-term use of methotrexate. Patients should be advised to seek medical attention if they experience potential signs and symptoms of hepatotoxicity such as fever, rash, itching, anorexia, nausea, vomiting, fatigue, right upper quadrant pain, dark urine, pale stools, and jaundice.

References

  1. (2002) "Product Information. Methotrexate (methotrexate)." Lederle Laboratories
  2. Cerner Multum, Inc. "UK Summary of Product Characteristics."
  3. (2023) "Product Information. Methotrexate (methotrexate)." Hospira Inc

Switch to consumer interaction data

Moderate

nabumetone food

Applies to: nabumetone

GENERALLY AVOID: The concurrent use of aspirin or nonsteroidal anti-inflammatory drugs (NSAIDs) and ethanol may lead to gastrointestinal (GI) blood loss. The mechanism may be due to a combined local effect as well as inhibition of prostaglandins leading to decreased integrity of the GI lining.

MANAGEMENT: Patients should be counseled on this potential interaction and advised to refrain from alcohol consumption while taking aspirin or NSAIDs.

References

  1. (2002) "Product Information. Motrin (ibuprofen)." Pharmacia and Upjohn

Switch to consumer interaction data

Moderate

spironolactone food

Applies to: spironolactone

MONITOR: Many psychotherapeutic and CNS-active agents (e.g., anxiolytics, sedatives, hypnotics, antidepressants, antipsychotics, opioids, alcohol, muscle relaxants) exhibit hypotensive effects, especially during initiation of therapy and dose escalation. Coadministration with antihypertensives and other hypotensive agents, in particular vasodilators and alpha-blockers, may result in additive effects on blood pressure and orthostasis.

MANAGEMENT: Caution and close monitoring for development of hypotension is advised during coadministration of these agents. Some authorities recommend avoiding alcohol in patients receiving vasodilating antihypertensive drugs. Patients should be advised to avoid rising abruptly from a sitting or recumbent position and to notify their physician if they experience dizziness, lightheadedness, syncope, orthostasis, or tachycardia.

References

  1. Sternbach H (1991) "Fluoxetine-associated potentiation of calcium-channel blockers." J Clin Psychopharmacol, 11, p. 390-1
  2. Shook TL, Kirshenbaum JM, Hundley RF, Shorey JM, Lamas GA (1984) "Ethanol intoxication complicating intravenous nitroglycerin therapy." Ann Intern Med, 101, p. 498-9
  3. Feder R (1991) "Bradycardia and syncope induced by fluoxetine." J Clin Psychiatry, 52, p. 139
  4. Ellison JM, Milofsky JE, Ely E (1990) "Fluoxetine-induced bradycardia and syncope in two patients." J Clin Psychiatry, 51, p. 385-6
  5. Rodriguez de la Torre B, Dreher J, Malevany I, et al. (2001) "Serum levels and cardiovascular effects of tricyclic antidepressants and selective serotonin reuptake inhibitors in depressed patients." Ther Drug Monit, 23, p. 435-40
  6. Cerner Multum, Inc. "Australian Product Information."
  7. Pacher P, Kecskemeti V (2004) "Cardiovascular side effects of new antidepressants and antipsychotics: new drugs, old concerns?" Curr Pharm Des, 10, p. 2463-75
  8. Andrews C, Pinner G (1998) "Postural hypotension induced by paroxetine." BMJ, 316, p. 595
View all 8 references

Switch to consumer interaction data

Moderate

methotrexate food

Applies to: methotrexate

MONITOR: Limited data suggest that consumption of greater than 180 mg/day of caffeine may interfere with the efficacy of methotrexate (MTX) in patients with rheumatoid arthritis. The exact mechanism of interaction is unknown but may be related to the antagonistic effect of caffeine on adenosine receptors, as anti-inflammatory properties of MTX is thought to result from the accumulation of adenosine. In a study of 39 patients treated with MTX 7.5 mg/week (without folate supplementation) for 3 months, patients with high caffeine intake (more than 180 mg/day) experienced significantly less improvement in morning stiffness and joint pain from baseline than patients with low caffeine intake (less than 120 mg/day). There were no significant differences between the responses of patients with moderate caffeine intake (120 to 180 mg/day) and those of the other 2 groups. In an interview of 91 patients treated with MTX, 26% of patients who discontinued the drug were regular coffee drinkers compared to only 2% of those still receiving the drug. Because treatment failure was the reason for MTX discontinuation in 80% of patients who discontinued, the investigators suggested that caffeine may have interfered with MTX efficacy.

MANAGEMENT: Until further information is available, the potential for interaction should be considered in patients who consume substantial amounts of caffeine and caffeine-containing foods and are prescribed methotrexate for rheumatoid arthritis. It may be appropriate to limit caffeine intake if an interaction is suspected in cases of treatment failure.

References

  1. Nesher G, Mates M, Zevin S (2003) "Effect of caffeine consumption on efficacy of methotrexate in rheumatoid arthritis." Arthritis Rheum, 48, p. 571-572

Switch to consumer interaction data

Moderate

buPROPion food

Applies to: Wellbutrin XL (bupropion)

MONITOR: Additive or synergistic effects on blood pressure may occur when bupropion is combined with sympathomimetic agents such as nasal decongestants, adrenergic bronchodilators, ophthalmic vasoconstrictors, and systemic vasopressors. Treatment with bupropion can result in elevated blood pressure and hypertension. In clinical practice, hypertension, in some cases severe and requiring acute treatment, has been observed in patients receiving bupropion alone and in combination with nicotine replacement therapy. These events have occurred in both patients with and without evidence of preexisting hypertension. Furthermore, postmarketing cases of hypertensive crisis have been reported during the initial titration phase with bupropion-naltrexone treatment.

MANAGEMENT: Caution is advised when bupropion is used with other drugs that increase dopaminergic or noradrenergic activity due to an increased risk of hypertension. Blood pressure and heart rate should be measured prior to initiating bupropion therapy and monitored at regular intervals consistent with usual clinical practice, particularly in patients with preexisting hypertension. Dose reduction or discontinuation of bupropion should be considered in patients who experience clinically significant and sustained increases in blood pressure or heart rate.

References

  1. (2022) "Product Information. Auvelity (bupropion-dextromethorphan)." Axsome Therapeutics, Inc., 1
  2. (2022) "Product Information. Zyban (bupropion)." GlaxoSmithKline UK Ltd
  3. (2022) "Product Information. Wellbutrin XL (bupropion)." Bausch Health, Canada Inc.
  4. (2021) "Product Information. Contrave (bupropion-naltrexone)." Currax Pharmaceuticals LLC
View all 4 references

Switch to consumer interaction data

Moderate

buPROPion food

Applies to: Wellbutrin XL (bupropion)

MONITOR: The concomitant use of bupropion and nicotine replacement for smoking cessation may increase the risk of hypertension. In a clinical study (n=250), 6.1% of patients who used sustained-release bupropion with nicotine transdermal system developed treatment-emergent hypertension, compared to 2.5% of patients treated with bupropion alone, 1.6% treated with nicotine alone, and 3.1% treated with placebo. Three patients in the bupropion plus nicotine group and one patient in the nicotine-only group discontinued treatment due to hypertension. The majority had evidence of preexisting hypertension.

MANAGEMENT: Blood pressure monitoring is recommended for patients concomitantly using bupropion and nicotine replacement for smoking cessation.

References

  1. (2001) "Product Information. Zyban (bupropion)." Glaxo Wellcome

Switch to consumer interaction data

Therapeutic duplication warnings

Therapeutic duplication is the use of more than one medicine from the same drug category or therapeutic class to treat the same condition. This can be intentional in cases where drugs with similar actions are used together for demonstrated therapeutic benefit. It can also be unintentional in cases where a patient has been treated by more than one doctor, or had prescriptions filled at more than one pharmacy, and can have potentially adverse consequences.

Duplication

Antidepressants

Therapeutic duplication

The recommended maximum number of medicines in the 'antidepressants' category to be taken concurrently is usually one. Your list includes two medicines belonging to the 'antidepressants' category:

  • Lexapro (escitalopram)
  • Wellbutrin XL (bupropion)

Note: In certain circumstances, the benefits of taking this combination of drugs may outweigh any risks. Always consult your healthcare provider before making changes to your medications or dosage.


Report options

Loading...
QR code containing a link to this page

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Learn more

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.