Skip to main content

Drug Interactions between Velsipity and voclosporin

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Major

voclosporin etrasimod

Applies to: voclosporin and Velsipity (etrasimod)

GENERALLY AVOID: Coadministration of etrasimod with antineoplastic, immunosuppressive, or other immune-modulating therapies may increase the risk of unintended additive immunosuppressive effects. Etrasimod causes reversible sequestration of lymphocytes in lymphoid tissues. When administered daily for 52 weeks, etrasimod produced a mean reduction in peripheral blood lymphocyte count to 45% of baseline values, which may increase the risk of infections. Life-threatening and rare fatal infections have occurred in association with other sphingosine 1-phosphate (S1P) receptor modulators. Decreased lymphocyte counts persist during chronic daily dosing and generally return to normal within 4 to 5 weeks after stopping the medication.

MANAGEMENT: The safety and efficacy of etrasimod in combination with antineoplastic, immunosuppressive, or immune-modulating agents have not been evaluated. Because its pharmacodynamic effects may persist for up to 5 weeks after treatment discontinuation, concomitant use during and within 5 weeks following the last dose of etrasimod with antineoplastic, immunosuppressive, or immune-modulating agents should generally be avoided. If concomitant use within this period is considered necessary, patients should be monitored for infectious complications during this extended period. When switching from drugs with prolonged immune effects to etrasimod, the half-life and mode of action of these drugs must also be considered to avoid unintended additive immunosuppressive effects.

MONITOR CLOSELY: Due to the risk of bradycardia and atrioventricular (AV) block, the risk of QT prolongation and torsade de pointes arrhythmia may be increased during initiation of etrasimod treatment in patients receiving drugs that prolong the QT interval. Etrasimod may cause a transient decrease in heart rate during initiation of therapy. In the randomized placebo-controlled studies in patients with ulcerative colitis UC-1 and UC-2, following an initial dose of 2 mg on day 1, the greatest mean decrease from baseline in heart rate of 7.2 bpm occurred at hour 2 (UC-2) and hour 3 (UC-1). In studies UC-2 and UC-3, bradycardia was reported on day 1 in 2.9% of patients on etrasimod compared to none in the placebo group. On Day 2, bradycardia was reported in 1 patient (0.3%) treated with etrasimod compared to none in the placebo group. Overall, subjects who experienced bradycardia were generally asymptomatic. Few subjects experienced symptoms such as dizziness, and these symptoms resolved without intervention. Initiation of etrasimod treatment has also resulted in transient AV conduction delays. In the UC-1 study, after 2 mg of etrasimod on day 1 of treatment, first- or second-degree Mobitz type I AV blocks were observed in 0.7% of etrasimod- treated subjects compared to none in the placebo group. In studies UC-2 and UC-3, Mobitz type I AV blocks were observed in 0.8% of etrasimod-treated subjects compared to none in the placebo group. In general, the risk of an individual agent or a combination of agents causing ventricular arrhythmia in association with QT prolongation is largely unpredictable but may be increased by certain underlying risk factors such as congenital long QT syndrome, cardiac disease, and electrolyte disturbances (e.g., hypokalemia, hypomagnesemia). In addition, the extent of drug-induced QT prolongation is dependent on the particular drug(s) involved and dosage(s) of the drug(s).

MANAGEMENT: Because bradycardia and AV block are recognized risk factors for QT prolongation and torsade de pointes arrhythmia, advice from a cardiologist should be sought if treatment with etrasimod is considered in patients with significant QT prolongation (QTcF greater than 450 msec in males or 470 msec in females), patients with arrhythmias requiring treatment with Class 1a or Class III antiarrhythmic agents, or in patients on concurrent therapy with QT prolonging drugs with a known risk of torsades de pointes or drugs that slow heart rate or AV conduction. Temporary interruption of anti-arrhythmic therapy may be required prior to initiation of etrasimod, depending on the patient's resting heart rate. Some authorities state that treatment with an anti-arrhythmic agent may be initiated in patients who have been stabilized on etrasimod therapy for at least 7 consecutive days. The manufacturer's product labeling or local treatment protocols should also be consulted for additional guidance.

References (5)
  1. (2023) "Product Information. Velsipity (etrasimod)." Pfizer U.S. Pharmaceuticals Group
  2. (2024) "Product Information. Velsipity (etrasimod)." Pfizer Australia Pty Ltd, pfpvelst11024
  3. (2024) "Product Information. Velsipity (etrasimod)." Pfizer Ltd
  4. (2024) "Product Information. Velsipity (etrasimod)." Pfizer U.S. Pharmaceuticals Group
  5. (2024) "Product Information. Velsipity (etrasimod)." Pfizer Canada ULC

Drug and food interactions

Major

voclosporin food

Applies to: voclosporin

GENERALLY AVOID: Coadministration with grapefruit juice may increase the plasma concentrations of voclosporin. The mechanism is inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall by certain compounds present in grapefruits. Because voclosporin prolongs the QT interval in a dose-dependent manner, high plasma levels of voclosporin may increase the risk of ventricular arrhythmias such as ventricular tachycardia, ventricular fibrillation, and torsade de pointes. In drug interaction studies, coadministration with multiple doses of moderate CYP450 3A4 inhibitors fluconazole or diltiazem is predicted to increase the peak plasma concentration (Cmax) and the area under the 12-hour plasma concentration-time curve (AUC 0-12) of voclosporin by approximately 2- and 3-fold respectively. In general, the effect of grapefruit juice is concentration-, dose- and preparation-dependent, and can vary widely among brands. Certain preparations of grapefruit juice (e.g., high dose, double strength) have sometimes demonstrated potent inhibition of CYP450 3A4, while other preparations (e.g., low dose, single strength) have typically demonstrated moderate inhibition. Pharmacokinetic interactions involving grapefruit juice are also subject to a high degree of interpatient variability, thus the extent to which a given patient may be affected is difficult to predict. In addition, moderate-to-high dietary intake of potassium, especially salt substitutes, may increase the risk of hyperkalemia in some patients who are using voclosporin, which has been reported with the use of voclosporin. Patients with diabetes, heart failure, dehydration, or renal insufficiency have a greater risk of developing hyperkalemia.

ADJUST DOSING INTERVAL: Consumption of food can decrease the rate and extent of gastrointestinal absorption of voclosporin. When administered with either low- or high-fat meals, the peak plasma concentration (Cmax) of voclosporin decreased by 29% to 53% and systemic exposure (AUC) decreased by 15% to 25%.

MANAGEMENT: Patients receiving voclosporin therapy should be advised to avoid consumption of grapefruit or grapefruit juice. Voclosporin therapy should be administered at least 1 hour before or 2 hours after meals. Patients should also receive dietary counseling and be advised to not use potassium-containing salt substitutes or over-the-counter potassium supplements without consulting their doctor. If salt substitutes are used concurrently, regular monitoring of serum potassium levels is recommended. Patients should also be advised to seek medical attention if they experience symptoms of hyperkalemia such as weakness, irregular heartbeat, confusion, tingling of the extremities, or feelings of heaviness in the legs.

References (33)
  1. Edgar B, Bailey D, Bergstrand R, et al. (1992) "Acute effects of drinking grapefruit juice on the pharmacokinetics and dynamics on felodipine and its potential clinical relevance." Eur J Clin Pharmacol, 42, p. 313-7
  2. Jonkman JH, Sollie FA, Sauter R, Steinijans VW (1991) "The influence of caffeine on the steady-state pharmacokinetics of theophylline." Clin Pharmacol Ther, 49, p. 248-55
  3. Bailey DG, Arnold JM, Munoz C, Spence JD (1993) "Grapefruit juice--felodipine interaction: mechanism, predictability, and effect of naringin." Clin Pharmacol Ther, 53, p. 637-42
  4. Bailey DG, Arnold JMO, Spence JD (1994) "Grapefruit juice and drugs - how significant is the interaction." Clin Pharmacokinet, 26, p. 91-8
  5. Sigusch H, Hippius M, Henschel L, Kaufmann K, Hoffmann A (1994) "Influence of grapefruit juice on the pharmacokinetics of a slow release nifedipine formulation." Pharmazie, 49, p. 522-4
  6. Bailey DG, Arnold JM, Strong HA, Munoz C, Spence JD (1993) "Effect of grapefruit juice and naringin on nisoldipine pharmacokinetics." Clin Pharmacol Ther, 54, p. 589-94
  7. Yamreudeewong W, Henann NE, Fazio A, Lower DL, Cassidy TG (1995) "Drug-food interactions in clinical practice." J Fam Pract, 40, p. 376-84
  8. (1995) "Grapefruit juice interactions with drugs." Med Lett Drugs Ther, 37, p. 73-4
  9. Hukkinen SK, Varhe A, Olkkola KT, Neuvonen PJ (1995) "Plasma concentrations of triazolam are increased by concomitant ingestion of grapefruit juice." Clin Pharmacol Ther, 58, p. 127-31
  10. Min DI, Ku YM, Geraets DR, Lee HC (1996) "Effect of grapefruit juice on the pharmacokinetics and pharmacodynamics of quinidine in healthy volunteers." J Clin Pharmacol, 36, p. 469-76
  11. Majeed A, Kareem A (1996) "Effect of grapefruit juice on cyclosporine pharmacokinetics." Pediatr Nephrol, 10, p. 395
  12. Clifford CP, Adams DA, Murray S, Taylor GW, Wilkins MR, Boobis AR, Davies DS (1996) "Pharmacokinetic and cardiac effects of terfenadine after inhibition of its metabolism by grapefruit juice." Br J Clin Pharmacol, 42, p662
  13. Josefsson M, Zackrisson AL, Ahlner J (1996) "Effect of grapefruit juice on the pharmacokinetics of amlodipine in healthy volunteers." Eur J Clin Pharmacol, 51, p. 189-93
  14. Kantola T, Kivisto KT, Neuvonen PJ (1998) "Grapefruit juice greatly increases serum concentrations of lovastatin and lovastatin acid." Clin Pharmacol Ther, 63, p. 397-402
  15. Ozdemir M, Aktan Y, Boydag BS, Cingi MI, Musmul A (1998) "Interaction between grapefruit juice and diazepam in humans." Eur J Drug Metab Pharmacokinet, 23, p. 55-9
  16. Bailey DG, Malcolm J, Arnold O, Spence JD (1998) "Grapefruit juice-drug interactions." Br J Clin Pharmacol, 46, p. 101-10
  17. Bailey DG, Kreeft JH, Munoz C, Freeman DJ, Bend JR (1998) "Grapefruit juice felodipine interaction: Effect of naringin and 6',7'-dihydroxybergamottin in humans." Clin Pharmacol Ther, 64, p. 248-56
  18. Garg SK, Kumar N, Bhargava VK, Prabhakar SK (1998) "Effect of grapefruit juice on carbamazepine bioavailability in patients with epilepsy." Clin Pharmacol Ther, 64, p. 286-8
  19. Lilja JJ, Kivisto KT, Neuvonen PJ (1998) "Grapefruit juice-simvastatin interaction: Effect on serum concentrations of simvastatin, simvastatin acid, and HMG-CoA reductase inhibitors." Clin Pharmacol Ther, 64, p. 477-83
  20. Fuhr U, Maier-Bruggemann A, Blume H, et al. (1998) "Grapefruit juice increases oral nimodipine bioavailability." Int J Clin Pharmacol Ther, 36, p. 126-32
  21. Lilja JJ, Kivisto KT, Neuvonen PJ (1999) "Grapefruit juice increases serum concentrations of atorvastatin and has no effect on pravastatin." Clin Pharmacol Ther, 66, p. 118-27
  22. Eagling VA, Profit L, Back DJ (1999) "Inhibition of the CYP3A4-mediated metabolism and P-glycoprotein-mediated transport of the HIV-I protease inhibitor saquinavir by grapefruit juice components." Br J Clin Pharmacol, 48, p. 543-52
  23. Damkier P, Hansen LL, Brosen K (1999) "Effect of diclofenac, disulfiram, itraconazole, grapefruit juice and erythromycin on the pharmacokinetics of quinidine." Br J Clin Pharmacol, 48, p. 829-38
  24. Lee AJ, Chan WK, Harralson AF, Buffum J, Bui BCC (1999) "The effects of grapefruit juice on sertraline metabolism: An in vitro and in vivo study." Clin Ther, 21, p. 1890-9
  25. Dresser GK, Spence JD, Bailey DG (2000) "Pharmacokinetic-pharmacodynamic consequences and clinical relevance of cytochrome P450 3A4 inhibition." Clin Pharmacokinet, 38, p. 41-57
  26. Gunston GD, Mehta U (2000) "Potentially serious drug interactions with grapefruit juice." S Afr Med J, 90, p. 41
  27. Takanaga H, Ohnishi A, Maatsuo H, et al. (2000) "Pharmacokinetic analysis of felodipine-grapefruit juice interaction based on an irreversible enzyme inhibition model." Br J Clin Pharmacol, 49, p. 49-58
  28. Libersa CC, Brique SA, Motte KB, et al. (2000) "Dramatic inhibition of amiodarone metabolism induced by grapefruit juice." Br J Clin Pharmacol, 49, p. 373-8
  29. Bailey DG, Dresser GR, Kreeft JH, Munoz C, Freeman DJ, Bend JR (2000) "Grapefruit-felodipine interaction: Effect of unprocessed fruit and probable active ingredients." Clin Pharmacol Ther, 68, p. 468-77
  30. Zaidenstein R, Soback S, Gips M, Avni B, Dishi V, Weissgarten Y, Golik A, Scapa E (2001) "Effect of grapefruit juice on the pharmacokinetics of losartan and its active metabolite E3174 in healthy volunteers." Ther Drug Monit, 23, p. 369-73
  31. Sato J, Nakata H, Owada E, Kikuta T, Umetsu M, Ito K (1993) "Influence of usual intake of dietary caffeine on single-dose kinetics of theophylline in healthy human subjects." Eur J Clin Pharmacol, 44, p. 295-8
  32. Flanagan D (2005) "Understanding the grapefruit-drug interaction." Gen Dent, 53, 282-5; quiz 286
  33. (2021) "Product Information. Lupkynis (voclosporin)." Aurinia Pharma
Moderate

etrasimod food

Applies to: Velsipity (etrasimod)

GENERALLY AVOID: Coadministration with moderate inhibitors of CYP450 3A4 such as grapefruit juice in patients who known or suspected to be poor CYP450 2C9 metabolizers may increase the exposure of etrasimod. Etrasimod is primarily metabolized by the isoenzymes CYP450 3A4, 2C8, and 2C9. Pharmacokinetic studies have reported that no single enzyme system appears to dominate the elimination pathway of etrasimod. Therefore, the involvement of multiple CYP450 isoforms reduces the likelihood of drug-drug interactions when only a single CYP450 isoform is strongly or moderately inhibited by a coadministered drug. In clinical drug interaction studies, when etrasimod was administered with the dual moderate CYP450 2C9 and 3A4 inhibitor fluconazole at steady-state levels, etrasimod systemic exposure (AUC) increased by 84%. However, concomitant use with the potent CYP450 3A4 inhibitor itraconazole increased the AUC of etrasimod by 32%, which was not considered by the manufacturer to be clinically significant. The effect on etrasimod systemic exposure in CYP450 2C9 intermediate metabolizers treated with less potent CYP450 3A4 inhibitors is not known. Increased plasma concentrations of etrasimod may increase the risk of infection, bradyarrhythmia, AV conduction delays, elevated transaminase levels, and macular edema.

MANAGEMENT: Until further information is available, the consumption of grapefruit and grapefruit juice in combination with moderate to potent CYP450 2C8 inhibitors such as gemfibrozil should be avoided or limited during treatment with etrasimod in patients who are poor CYP450 2C9 metabolizers. Caution is recommended with grapefruit products consumption in patients who are intermediate CYP450 2C9 metabolizers. Patients should be advised to notify their physician if they experience potential adverse effects of etrasimod.

References (6)
  1. (2023) "Product Information. Velsipity (etrasimod)." Pfizer U.S. Pharmaceuticals Group
  2. Lee C, Taylor C, Tang Y, Caballero LV, shan k, Randle A, Grundy JS (2022) Effects of fluconazole, gemfibrozil, and rifampin on the pharmacokinetics, safety, and tolerability of etrasimod https://gut.bmj.com/content/71/Suppl_1/A142.1
  3. (2024) "Product Information. Velsipity (etrasimod)." Pfizer Australia Pty Ltd, pfpvelst11024
  4. (2024) "Product Information. Velsipity (etrasimod)." Pfizer U.S. Pharmaceuticals Group
  5. (2024) "Product Information. Velsipity (etrasimod)." Pfizer Canada ULC
  6. Harnik S, Ungar B, Loebstein R, Ben-Horin S (2024) "A Gastroenterologist's guide to drug interactions of small molecules for inflammatory bowel disease" United European Gastroenterol J, 12, p. 627-637

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.