Skip to main content

Drug Interactions between terbutaline and terfenadine

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Moderate

terfenadine terbutaline

Applies to: terfenadine and terbutaline

MONITOR: Beta-2 adrenergic agonists can cause dose-related prolongation of the QT interval and potassium loss. Theoretically, coadministration with other agents that can prolong the QT interval may result in additive effects and increased risk of ventricular arrhythmias including torsade de pointes and sudden death. In general, the risk of an individual agent or a combination of agents causing ventricular arrhythmia in association with QT prolongation is largely unpredictable but may be increased by certain underlying risk factors such as congenital long QT syndrome, cardiac disease, and electrolyte disturbances (e.g., hypokalemia, hypomagnesemia). In addition, the extent of drug-induced QT prolongation is dependent on the particular drug(s) involved and dosage(s) of the drug(s). Clinically significant prolongation of QT interval and hypokalemia occur infrequently when beta-2 agonists are inhaled at normally recommended dosages. However, these effects may be more common when the drugs are administered systemically or when recommended dosages are exceeded.

MANAGEMENT: Caution is recommended if beta-2 agonists are used in combination with other drugs that can prolong the QT interval. Patients should be advised to seek prompt medical attention if they experience symptoms that could indicate the occurrence of torsade de pointes such as dizziness, lightheadedness, fainting, palpitation, irregular heart rhythm, shortness of breath, or syncope.

References

  1. Whyte KF, Addis GJ, Whitesmith R, Reid JL (1987) "The mechanism of salbutamol-induced hypokalaemia." Br J Clin Pharmacol, 23, p. 65-71
  2. Larsson S, Svedmyr N (1977) "Bronchodilating effect and side effects of beta2- adrenoceptor stimulants by different modes of administration (tablets, metered aerosol, and combinations thereof). A study with salbutamol inasthmatics." Am Rev Respir Dis, 116, p. 861-9
  3. Hastwell G, Lambert BE (1978) "The effect of oral salbutamol on serum potassium and blood sugar." Br J Obstet Gynaecol, 85, p. 767-9
  4. (1981) "Hypokalaemia due to salbutamol overdosage." Br Med J (Clin Res Ed), 283, p. 500-1
  5. Kantola I, Tarssanen L (1986) "Hypokalemia from usual salbutamol dosage ." Chest, 89, p. 619-20
  6. Wong CS, Pavord ID, Williams J, Britton JR, Tattersfield AE (1990) "Bronchodilator, cardiovascular, and hypokalaemic effects of fenoterol, salbutamol, and terbutaline in asthma." Lancet, 336, p. 1396-9
  7. Gross TL, Sokol RJ (1980) "Severe hypokalemia and acidosis: a potential complication of beta- adrenergic treatment." Am J Obstet Gynecol, 138, p. 1225-6
  8. Clifton GD, Hunt BA, Patel RC, Burki NK (1990) "Effects of sequential doses of parenteral terbutaline on plasma levels of potassium and related cardiopulmonary responses." Am Rev Respir Dis, 141, p. 575-9
  9. Hurlbert BJ, Edelman JD, David K (1981) "Serum potassium levels during and after terbutaline." Anesth Analg, 60, p. 723-5
  10. Bengtsson B, Fagerstrom PO (1982) "Extrapulmonary effects of terbutaline during prolonged administration." Clin Pharmacol Ther, 31, p. 726-32
  11. Gelmont DM, Balmes JR, Yee A (1988) "Hypokalemia induced by inhaled bronchodilators." Chest, 94, p. 763-6
  12. Sanders JP, Potter DE, Ellis S, Bee DE, Grant JA (1977) "Metabolic and cardiovascular effects of carbuterol and metaproterenol." J Allergy Clin Immunol, 60, p. 174-9
  13. (2002) "Product Information. Proventil (albuterol)." Schering Corporation
  14. Windom H, Grainger J, Burgess C, Crane J, Pearce N, Beasley R (1990) "A comparison of the haemodynamic and hypokalaemic effects of inhaled pirbuterol and salbutamol." N Z Med J, 103, p. 259-61
  15. "Product Information. Serevent (salmeterol)." Glaxo Wellcome
  16. (2001) "Product Information. Maxair (pirbuterol)." 3M Pharmaceuticals
  17. Dickens GR, Mccoy RA, West R, Stapczynski JS, Clifton GD (1994) "Effect of nebulized albuterol on serum potassium and cardiac rhythm in patients with asthma or chronic obstructive pulmonary disease." Pharmacotherapy, 14, p. 729-33
  18. Tveskov C, Djurhuus MS, Klitgaard NAH, Egstrup K (1994) "Potassium and magnesium distribution, ECG changes, and ventricular ectopic beats during beta(2)-adrenergic stimulation with terbutaline in healthy subjects." Chest, 106, p. 1654-9
  19. Braden GL, vonOeyen PT, Germain MJ, Watson DJ, Haag BL (1997) "Ritodrine- and terbutaline-induced hypokalemia in preterm labor: Mechanisms and consequences." Kidney Int, 51, p. 1867-75
  20. Rakhmanina NY, Kearns GL, Farrar HC (1998) "Hypokalemia in an asthmatic child from abuse of albuterol metered dose inhaler." Pediatr Emerg Care, 14, p. 145-7
  21. (2001) "Product Information. Xopenex (levalbuterol)." Sepracor Inc
  22. (2001) "Product Information. Foradil (formoterol)." Novartis Pharmaceuticals
  23. Ferguson GT, Funck-Brentano C, Fischer T, Darken P, Reisner C (2003) "Cardiovascular Safety of Salmeterol in COPD." Chest, 123, p. 1817-24
  24. Milic M, Bao X, Rizos D, Liu F, Ziegler MG (2006) "Literature review and pilot studies of the effect of qt correction formulas on reported beta(2)-agonist-induced QTc prolongation." Clin Ther, 28, p. 582-90
  25. (2006) "Product Information. Brovana (arformoterol)." Sepracor Inc
  26. Lowe MD, Rowland E, Brown MJ, Grace AA (2001) "Beta(2) adrenergic receptors mediate important electrophysiological effects in human ventricular myocardium." Heart, 86, p. 45-51
  27. Sun ZH, Swan H, Vitasalo M, Toivonen L (1998) "Effects of epinephrine and phenylephrine on QT interval dispersion in congenital long QT syndrome." J Am Coll Cardiol, 31, p. 1400-5
  28. (2011) "Product Information. Arcapta Neohaler (indacaterol)." Novartis Pharmaceuticals
  29. (2013) "Product Information. Breo Ellipta (fluticasone-vilanterol)." GlaxoSmithKline
  30. (2014) "Product Information. Striverdi Respimat (olodaterol)." Boehringer Ingelheim
View all 30 references

Switch to consumer interaction data

Drug and food interactions

Major

terfenadine food

Applies to: terfenadine

CONTRAINDICATED: The consumption of grapefruit juice has been associated with significantly increased plasma concentrations of terfenadine. The mechanism is inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall induced by certain compounds present in grapefruits. Terfenadine in high serum levels has been associated with prolongation of the QT interval and development of torsade de pointes, a potentially fatal ventricular arrhythmia.

MANAGEMENT: Due to the risk of cardiotoxicity, patients receiving the drug should be advised to avoid consumption of grapefruit products. Loratadine, cetirizine, and fexofenadine may be safer alternatives in patients who may have trouble adhering to the dietary restriction.

References

  1. Honig PK, Woosley RL, Zamani K, Conner DP, Cantilena LR Jr (1992) "Changes in the pharmacokinetics and electrocardiographic pharmacodynamics of terfenadine with concomitant administration of erythromycin." Clin Pharmacol Ther, 52, p. 231-8
  2. Zimmermann M, Duruz H, Guinand O, et al. (1992) "Torsades de Pointes after treatment with terfenadine and ketoconazole." Eur Heart J, 13, p. 1002-3
  3. Mathews DR, McNutt B, Okerholm R, et al. (1991) "Torsades de pointes occurring in association with terfenadine use." JAMA, 266, p. 2375-6
  4. Monahan BP, Ferguson CL, Killeavy ES, et al. (1990) "Torsades de pointes occurring in association with terfenadine use." JAMA, 264, p. 2788-90
  5. Honig PK, Wortham DC, Zamani K, et al. (1993) "Terfenadine-ketoconazole interaction: pharmacokinetic and electrocardiographic consequences." JAMA, 269, p. 1513-8
  6. Pohjola-Sintonen S, Viitasalo M, Toivonene L, Neuvonen P (1993) "Torsades de pointes after terfenadine-itraconazole interaction." BMJ, 306, p. 186
  7. Cortese LM, Bjornson DC (1992) "Potential interaction between terfenadine and macrolide antibiotics." Clin Pharm, 11, p. 675
  8. Paris DG, Parente TF, Bruschetta HR, Guzman E, Niarchos AP (1994) "Torsades-de-pointes induced by erythromycin and terfenadine." Am J Emerg Med, 12, p. 636-8
  9. Zechnich AD, Haxby DG (1996) "Drug interactions associated with terfenadine and related nonsedating antihistamines." West J Med, 164, p. 68-9
  10. Honig PK, Wortham DC, Lazarev A, Cantilena LR (1996) "Grapefruit juice alters the systemic bioavailability and cardiac repolarization of terfenadine in poor metabolizers of terfenadine." J Clin Pharmacol, 36, p. 345-51
  11. Woosley RL (1996) "Cardiac actions of antihistamines." Annu Rev Pharmacol Toxicol, 36, p. 233-52
  12. Benton RE, Honig PK, Zamani K, Cantilena LR, Woosley RL (1996) "Grapefruit juice alters terfenadine pharmacokinetics resulting in prolongation of repolarization on the electrocardiogram." Clin Pharmacol Ther, 59, p. 383-8
  13. Hsieh MH, Chen SA, Chiang CE, et al. (1996) "Drug-induced torsades de pointes in one patient with congenital long QT syndrome." Int J Cardiol, 54, p. 85-8
  14. Clifford CP, Adams DA, Murray S, Taylor GW, Wilkins MR, Boobis AR, Davies DS (1996) "Pharmacokinetic and cardiac effects of terfenadine after inhibition of its metabolism by grapefruit juice." Br J Clin Pharmacol, 42, p662
  15. Rau SE, Bend JR, Arnold JMO, Tran LT, Spence JD, Bailey DG (1997) "Grapefruit juice terfenadine single-dose interaction: Magnitude, mechanism, and relevance." Clin Pharmacol Ther, 61, p. 401-9
  16. Bailey DG, Malcolm J, Arnold O, Spence JD (1998) "Grapefruit juice-drug interactions." Br J Clin Pharmacol, 46, p. 101-10
  17. Bailey DG, Dresser GR, Kreeft JH, Munoz C, Freeman DJ, Bend JR (2000) "Grapefruit-felodipine interaction: Effect of unprocessed fruit and probable active ingredients." Clin Pharmacol Ther, 68, p. 468-77
View all 17 references

Switch to consumer interaction data

Moderate

terbutaline food

Applies to: terbutaline

MONITOR: Coadministration of two or more sympathomimetic agents may increase the risk of adverse effects such as nervousness, irritability, and increased heart rate. Central nervous system (CNS) stimulants, particularly amphetamines, can potentiate the adrenergic response to vasopressors and other sympathomimetic agents. Additive increases in blood pressure and heart rate may occur due to enhanced peripheral sympathetic activity.

MANAGEMENT: Caution is advised if two or more sympathomimetic agents are coadministered. Pulse and blood pressure should be closely monitored.

References

  1. Rosenblatt JE, Lake CR, van Kammen DP, Ziegler MG, Bunney WE Jr (1979) "Interactions of amphetamine, pimozide, and lithium on plasma norepineophrine and dopamine-beta-hydroxylase in schizophrenic patients." Psychiatry Res, 1, p. 45-52
  2. Cavanaugh JH, Griffith JD, Oates JA (1970) "Effect of amphetamine on the pressor response to tyramine: formation of p-hydroxynorephedrine from amphetamine in man." Clin Pharmacol Ther, 11, p. 656
  3. (2001) "Product Information. Adderall (amphetamine-dextroamphetamine)." Shire Richwood Pharmaceutical Company Inc
  4. (2001) "Product Information. Tenuate (diethylpropion)." Aventis Pharmaceuticals
  5. (2001) "Product Information. Sanorex (mazindol)." Novartis Pharmaceuticals
  6. (2001) "Product Information. Focalin (dexmethylphenidate)." Mikart Inc
  7. (2002) "Product Information. Strattera (atomoxetine)." Lilly, Eli and Company
View all 7 references

Switch to consumer interaction data

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Loading...
QR code containing a link to this page

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.