Skip to main content

Drug Interactions between Teczem and Tekturna

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Major

enalapril aliskiren

Applies to: Teczem (diltiazem / enalapril) and Tekturna (aliskiren)

CONTRAINDICATED: In patients with type 2 diabetes and renal impairment, coadministration of aliskiren with ACE inhibitors or angiotensin receptor blockers (ARBs) has been associated with an increased risk of adverse events including renal complications, hyperkalemia, and hypotension. Interim review of data from the ALTITUDE study after 18 to 24 months revealed no additional benefit and a higher incidence of adverse events when aliskiren 300 mg daily, as opposed to placebo, was added to optimal cardiovascular treatment including an ACE inhibitor or ARB. Another preliminary finding was a slight excess of death or stroke in the aliskiren group; however, the relationship to aliskiren treatment has not been established. ALTITUDE was a multinational study in 8,606 patients from 36 countries evaluating the potential benefits of aliskiren to reduce the risk of cardiovascular and renal events in patients with type 2 diabetes and renal impairment, who are known to be at high risk of cardiovascular and renal events. The trial was halted in December 2011 per recommendation of the independent data monitoring committee overseeing the study.

GENERALLY AVOID: In patients without diabetes, coadministration of aliskiren with ACE inhibitors or ARBs may also be associated with increased risk of symptomatic hypotension, hyperkalemia, and changes in renal function including acute renal failure. All drugs inhibiting the renin-angiotensin system (RAS) can have these effects, which may be additive during concomitant administration. The risk of symptomatic hypotension is increased in the presence of marked volume and/or salt depletion. Elevations in serum potassium levels to greater than 5.5 mEq/L were infrequent with aliskiren alone (0.9% compared to 0.6% with placebo), but increased to 5.5% when used in combination with an ACE inhibitor in a diabetic population. Patients whose renal function may depend in part on the activity of the RAS, including those with renal artery stenosis, severe heart failure, postmyocardial infarction or volume depletion, may be at particular risk for developing acute renal failure with these drugs.

MANAGEMENT: The use of aliskiren with ACE inhibitors or ARBs is considered contraindicated in patients with diabetes and should be avoided in general, particularly in patients with moderate to severe renal impairment (i.e., creatinine clearance (CrCl) < 60 mL/min). Prescribers should not initiate aliskiren in diabetic patients who are taking an ACE inhibitor or an ARB, and should stop any aliskiren-containing treatment if these patients are already receiving the combination. Alternative antihypertensive treatment should be considered as necessary. Most patients do not obtain any additional benefit from combination therapy relative to monotherapy; therefore, the potential risks should be thoroughly assessed when aliskiren is prescribed with ACE inhibitors or ARBs for the treatment of essential hypertension in patients without diabetes. Volume or salt depletion should be corrected prior to initiation of treatment. Routine monitoring of blood pressure, electrolytes, and renal function are recommended, particularly in the elderly or patients with worsening heart failure or a risk for dehydration. Potassium supplementation should generally be avoided unless it is closely monitored, and patients should be advised to seek medical attention if they experience signs and symptoms of hyperkalemia such as weakness, listlessness, confusion, tingling of the extremities, and irregular heartbeat.

References

  1. (2007) "Product Information. Tekturna (aliskiren)." Novartis Pharmaceuticals
  2. Novartis International AG (2012) Novartis announces termination of ALTITUDE study with Rasilez Tekturna in high-risk patients with diabetes and renal impairment. http://cardiobrief.files.wordpress.com/2011/12/novartis-aliskiren-altitude-pr.pdf
  3. Chief Scientific Officer and Senior Vice-President Clinical and Regulatory Affairs, Health Canada, Leclerc JM (2012) Potential risks of cardiovascular and renal adverse events in patients with type 2 diabetes treated with aliskiren (RASILEZ) or aliskiren/hydrochlorothiazide (RASILEZ HCT). http://www.hc-sc.gc.ca/dhp-mps/alt_formats/pdf/medeff/advisories-avis/prof/2012/r
  4. National Kidney Foundation (2012) "KDOQI Clinical Practice Guideline for Diabetes and CKD: 2012 update." Am J Kidney Dis, 60, p. 850-86
  5. EMA. European Medicines Agency (2014) PRAC recommends against combined use of medicines affecting the renin-angiotensin (RAS) system: recommendation will now be considered by CHMP for final opinion. http://www.ema.europa.eu/docs/en_GB/document_library/Referrals_document/Renin-angiotensin_sys
  6. MHRA. Medicines and Healthcare Regulatory Agency (2014) Combination use of medicines from different classes of renin-angiotensin system blocking agents: risk of hyperkalaemia, hypotension, and impaired renal function--new warnings. http://www.mhra.gov.uk/Safetyinformation/DrugSafetyUpdate/CON426905
View all 6 references

Switch to consumer interaction data

Moderate

dilTIAZem aliskiren

Applies to: Teczem (diltiazem / enalapril) and Tekturna (aliskiren)

MONITOR: Coadministration with inhibitors of CYP450 3A4 and P-glycoprotein may increase the plasma concentrations and pharmacologic effects of aliskiren, which is a substrate of both the isoenzyme and efflux transporter. According to the product labeling, plasma levels of aliskiren were increased approximately 80% by the potent CYP450 3A4 and moderate P-gp inhibitor ketoconazole at a dosage of 200 mg twice daily. A 400 mg once daily dose of ketoconazole was not studied, but would be expected to further increase the magnitude of interaction. Similarly, plasma levels of aliskiren increased by approximately 2-fold when coadministered with the moderate CYP450 3A4 and potent P-gp inhibitor verapamil at a dosage of 240 mg once daily.

MANAGEMENT: Pharmacologic response to aliskiren should be monitored more closely whenever a CYP450 3A4 and/or P-gp inhibitor is added to or withdrawn from therapy, and the aliskiren dosage adjusted if necessary. Patients should be advised to notify their physician if they experience excessive adverse effects of aliskiren such as dizziness, lightheadedness, diarrhea, abdominal pain, and gastroesophageal reflux.

References

  1. Cerner Multum, Inc. "UK Summary of Product Characteristics."
  2. Canadian Pharmacists Association (2006) e-CPS. http://www.pharmacists.ca/function/Subscriptions/ecps.cfm?link=eCPS_quikLink
  3. (2007) "Product Information. Tekturna (aliskiren)." Novartis Pharmaceuticals
  4. Tapaninen T, Backman JT, Kurkinen K, Neuvonen P, Niemi M (2011) "Itraconazole, a P-glycoprotein and CYP3A4 inhibitor, markedly raises the plasma concentrations and enhances the renin-inhibiting effect of aliskiren." J Clin Pharmacol, 51, p. 359-67
View all 4 references

Switch to consumer interaction data

Minor

enalapril dilTIAZem

Applies to: Teczem (diltiazem / enalapril) and Teczem (diltiazem / enalapril)

Calcium channel blockers and angiotensin converting enzyme (ACE) inhibitors may have additive hypotensive effects. While these drugs are often safely used together, careful monitoring of the systemic blood pressure is recommended during coadministration, especially during the first one to three weeks of therapy.

References

  1. Kaplan NM (1991) "Amlodipine in the treatment of hypertension." Postgrad Med J, 67 Suppl 5, s15-9
  2. DeQuattro V (1991) "Comparison of benazepril and other antihypertensive agents alone and in combination with the diuretic hydrochlorothiazide." Clin Cardiol, 14, iv28-32;
  3. Sun JX, Cipriano A, Chan K, John VA (1994) "Pharmacokinetic interaction study between benazepril and amlodipine in healthy subjects." Eur J Clin Pharmacol, 47, p. 285-9
  4. Di Somma S, et al. (1992) "Antihypertensive effects of verapamil, captopril and their combination at rest and during dynamic exercise." Arzneimittelforschung, 42, p. 103
View all 4 references

Switch to consumer interaction data

Drug and food interactions

Moderate

enalapril food

Applies to: Teczem (diltiazem / enalapril)

GENERALLY AVOID: Moderate-to-high dietary intake of potassium can cause hyperkalemia in some patients who are using angiotensin converting enzyme (ACE) inhibitors. In some cases, affected patients were using a potassium-rich salt substitute. ACE inhibitors can promote hyperkalemia through inhibition of the renin-aldosterone-angiotensin (RAA) system.

MANAGEMENT: It is recommended that patients who are taking ACE inhibitors be advised to avoid moderately high or high potassium dietary intake. Particular attention should be paid to the potassium content of salt substitutes.

References

  1. (2002) "Product Information. Vasotec (enalapril)." Merck & Co., Inc
  2. Good CB, McDermott L (1995) "Diet and serum potassium in patients on ACE inhibitors." JAMA, 274, p. 538
  3. Ray K, Dorman S, Watson R (1999) "Severe hyperkalaemia due to the concomitant use of salt substitutes and ACE inhibitors in hypertension: a potentially life threatening interaction." J Hum Hypertens, 13, p. 717-20

Switch to consumer interaction data

Moderate

dilTIAZem food

Applies to: Teczem (diltiazem / enalapril)

MONITOR: Like many CNS-active agents, alcohol can exhibit hypotensive effects. Coadministration with antihypertensive agents including diltiazem may result in additive effects on blood pressure and orthostasis.

MONITOR: Grapefruit juice may increase the plasma concentrations of orally administered diltiazem in some patients. The proposed mechanism is inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall by certain compounds present in grapefruit. In a study of ten healthy male volunteers, administration of a single 120 mg oral dose of immediate-release diltiazem in combination with 250 mL of grapefruit juice increased the diltiazem peak plasma concentration (Cmax) and systemic exposure (AUC) by an average of 22% and 20%, respectively, compared to administration with water. The time to reach Cmax (Tmax) and the terminal half-life were not affected, and no statistically significant differences in blood pressure and heart rate were observed during administration with grapefruit juice relative to water. In a different study, repeated administration of 200 mL of grapefruit juice at 0, 2, 4, 8 and 12 hours had no significant effect on the Cmax or AUC of a single 120 mg oral dose of diltiazem, but increased its half-life from 4.1 to 5.1 hours. The ratios for the N-demethyl and deacetyl metabolites to diltiazem were also not affected by grapefruit juice. However, because pharmacokinetic interactions involving grapefruit juice are often subject to a high degree of interpatient variability, the extent to which a given patient may be affected is difficult to predict.

MANAGEMENT: Patients should be advised that alcohol may potentiate the hypotensive effects of diltiazem, especially during the initiation of therapy and following a dosage increase. Caution should be exercised when rising from a sitting or recumbent position, and patients should notify their physician if they experience dizziness, lightheadedness, syncope, orthostasis, or tachycardia. Patients who regularly consume grapefruit or grapefruit juice should be monitored for increased adverse effects of diltiazem such as such as headache, irregular heartbeat, edema, unexplained weight gain, and chest pain. Grapefruit and grapefruit juice should be avoided if an interaction is suspected.

References

  1. Bailey DG, Arnold JMO, Spence JD (1994) "Grapefruit juice and drugs - how significant is the interaction." Clin Pharmacokinet, 26, p. 91-8
  2. Sigusch H, Henschel L, Kraul H, Merkel U, Hoffmann A (1994) "Lack of effect of grapefruit juice on diltiazem bioavailability in normal subjects." Pharmazie, 49, p. 675-9
  3. Bailey DG, Malcolm J, Arnold O, Spence JD (1998) "Grapefruit juice-drug interactions." Br J Clin Pharmacol, 46, p. 101-10
  4. Christensen H, Asberg A, Holmboe AB, Berg KJ (2002) "Coadministration of grapefruit juice increases systemic exposure of diltiazem in healthy volunteers." Eur J Clin Pharmacol, 58, p. 515-520
  5. Cerner Multum, Inc. "UK Summary of Product Characteristics."
View all 5 references

Switch to consumer interaction data

Moderate

aliskiren food

Applies to: Tekturna (aliskiren)

GENERALLY AVOID: Coadministration with orange, apple, or grapefruit juice may significantly decrease the oral bioavailability and renin-inhibiting effect of aliskiren. The exact mechanism of interaction is unknown, but may include inhibition of OATP2B1-mediated influx of aliskiren in the small intestine, formation of insoluble complexes between fruit juice constituents and aliskiren, and/or increased ionization of aliskiren due to reduced intestinal pH. In 12 healthy volunteers, 200 mL of either orange juice or apple juice administered three times daily for 5 days in combination with a single 150 mg oral dose of aliskiren on day 3 reduced the mean aliskiren peak plasma concentration (Cmax) and systemic exposure (AUC) by approximately 80% and 60%, respectively, compared to water. Plasma renin activity was 87% and 67% higher at 24 hours postdose when aliskiren was administered with orange juice and apple juice, respectively, compared to water. No significant differences were observed in the blood pressure or heart rate between treatments. However, this may be due to the delayed onset of aliskiren's blood pressure-lowering effect, which would not be apparent following a single dose. A similar pharmacokinetic interaction has been reported with grapefruit juice. In 11 healthy volunteers, 200 mL of normal strength grapefruit juice administered three times daily for 5 days in combination with a single 150 mg oral dose of aliskiren on day 3 reduced the mean aliskiren Cmax and AUC by 81% and 61%, respectively, but there was no change in plasma renin activity compared to water. A high degree of interpatient variability was observed with all three interactions.

MONITOR: High-fat meals can substantially reduce the gastrointestinal absorption of aliskiren. According to the product labeling, administration of aliskiren with a high-fat meal decreased the mean peak plasma concentration (Cmax) and systemic exposure (AUC) by 85% and 71%, respectively. In clinical trials, however, aliskiren was administered without a fixed requirement in relation to meals.

MANAGEMENT: To ensure steady systemic drug levels and therapeutic effects, patients should establish a routine pattern for administration of aliskiren with regard to meals. Coadministration with orange, apple, or grapefruit juice should be avoided, especially if these juices are to be consumed on a regular basis or shortly before or after aliskiren dosing.

References

  1. (2007) "Product Information. Tekturna (aliskiren)." Novartis Pharmaceuticals
  2. Vaidyanathan S, Jarugula V, Dieterich HA, Howard D, Dole WP (2008) "Clinical pharmacokinetics and pharmacodynamics of aliskiren." Clin Pharmacokinet, 47, p. 515-31
  3. Tapaninen T, Neuvonen PJ, Niemi M (2010) "Grapefruit juice greatly reduces the plasma concentrations of the OATP2B1 and CYP3A4 substrate aliskiren." Clin Pharmacol Ther, 88, p. 339-42
  4. Tapaninen T, Neuvonen PJ, Niemi M (2010) "Orange and apple juices greatly reduce the plasma concentrations of the OATP2B1 substrate aliskiren." Br J Clin Pharmacol, 71, p. 718-26
View all 4 references

Switch to consumer interaction data

Moderate

enalapril food

Applies to: Teczem (diltiazem / enalapril)

MONITOR: Many psychotherapeutic and CNS-active agents (e.g., anxiolytics, sedatives, hypnotics, antidepressants, antipsychotics, opioids, alcohol, muscle relaxants) exhibit hypotensive effects, especially during initiation of therapy and dose escalation. Coadministration with antihypertensives and other hypotensive agents, in particular vasodilators and alpha-blockers, may result in additive effects on blood pressure and orthostasis.

MANAGEMENT: Caution and close monitoring for development of hypotension is advised during coadministration of these agents. Some authorities recommend avoiding alcohol in patients receiving vasodilating antihypertensive drugs. Patients should be advised to avoid rising abruptly from a sitting or recumbent position and to notify their physician if they experience dizziness, lightheadedness, syncope, orthostasis, or tachycardia.

References

  1. Sternbach H (1991) "Fluoxetine-associated potentiation of calcium-channel blockers." J Clin Psychopharmacol, 11, p. 390-1
  2. Shook TL, Kirshenbaum JM, Hundley RF, Shorey JM, Lamas GA (1984) "Ethanol intoxication complicating intravenous nitroglycerin therapy." Ann Intern Med, 101, p. 498-9
  3. Feder R (1991) "Bradycardia and syncope induced by fluoxetine." J Clin Psychiatry, 52, p. 139
  4. Ellison JM, Milofsky JE, Ely E (1990) "Fluoxetine-induced bradycardia and syncope in two patients." J Clin Psychiatry, 51, p. 385-6
  5. Rodriguez de la Torre B, Dreher J, Malevany I, et al. (2001) "Serum levels and cardiovascular effects of tricyclic antidepressants and selective serotonin reuptake inhibitors in depressed patients." Ther Drug Monit, 23, p. 435-40
  6. Cerner Multum, Inc. "Australian Product Information."
  7. Pacher P, Kecskemeti V (2004) "Cardiovascular side effects of new antidepressants and antipsychotics: new drugs, old concerns?" Curr Pharm Des, 10, p. 2463-75
  8. Andrews C, Pinner G (1998) "Postural hypotension induced by paroxetine." BMJ, 316, p. 595
View all 8 references

Switch to consumer interaction data

Moderate

dilTIAZem food

Applies to: Teczem (diltiazem / enalapril)

MONITOR: Calcium-containing products may decrease the effectiveness of calcium channel blockers by saturating calcium channels with calcium. Calcium chloride has been used to manage acute severe verapamil toxicity.

MANAGEMENT: Management consists of monitoring the effectiveness of calcium channel blocker therapy during coadministration with calcium products.

References

  1. Henry M, Kay MM, Viccellio P (1985) "Cardiogenic shock associated with calcium-channel and beta blockers: reversal with intravenous calcium chloride." Am J Emerg Med, 3, p. 334-6
  2. Moller IW (1987) "Cardiac arrest following intravenous verapamil combined with halothane anaesthesia." Br J Anaesth, 59, p. 522-6
  3. Oszko MA, Klutman NE (1987) "Use of calcium salts during cardiopulmonary resuscitation for reversing verapamil-associated hypotension." Clin Pharm, 6, p. 448-9
  4. Schoen MD, Parker RB, Hoon TJ, et al. (1991) "Evaluation of the pharmacokinetics and electrocardiographic effects of intravenous verapamil with intravenous calcium chloride pretreatment in normal subjects." Am J Cardiol, 67, p. 300-4
  5. O'Quinn SV, Wohns DH, Clarke S, Koch G, Patterson JH, Adams KF (1990) "Influence of calcium on the hemodynamic and anti-ischemic effects of nifedipine observed during treadmill exercise testing." Pharmacotherapy, 10, p. 247
  6. Woie L, Storstein L (1981) "Successful treatment of suicidal verapamil poisoning with calcium gluconate." Eur Heart J, 2, p. 239-42
  7. Morris DL, Goldschlager N (1983) "Calcium infusion for reversal of adverse effects of intravenous verapamil." JAMA, 249, p. 3212-3
  8. Guadagnino V, Greengart A, Hollander G, Solar M, Shani J, Lichstein E (1987) "Treatment of severe left ventricular dysfunction with calcium chloride in patients receiving verapamil." J Clin Pharmacol, 27, p. 407-9
  9. Luscher TF, Noll G, Sturmer T, Huser B, Wenk M (1994) "Calcium gluconate in severe verapamil intoxication." N Engl J Med, 330, p. 718-20
  10. Bar-Or D, Gasiel Y (1981) "Calcium and calciferol antagonise effect of verapamil in atrial fibrillation." Br Med J (Clin Res Ed), 282, p. 1585-6
  11. Lipman J, Jardine I, Roos C, Dreosti L (1982) "Intravenous calcium chloride as an antidote to verapamil-induced hypotension." Intensive Care Med, 8, p. 55-7
  12. McMillan R (1988) "Management of acute severe verapamil intoxication." J Emerg Med, 6, p. 193-6
  13. Perkins CM (1978) "Serious verapamil poisoning: treatment with intravenous calcium gluconate." Br Med J, 2, p. 1127
  14. Moroni F, Mannaioni PF, Dolara A, Ciaccheri M (1980) "Calcium gluconate and hypertonic sodium chloride in a case of massive verapamil poisoning." Clin Toxicol, 17, p. 395-400
View all 14 references

Switch to consumer interaction data

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Loading...
QR code containing a link to this page

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.