Skip to main content

Drug Interactions between ropivacaine / sufentanil and voriconazole

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Moderate

SUFentanil voriconazole

Applies to: ropivacaine / sufentanil and voriconazole

MONITOR: Coadministration with potent inhibitors of CYP450 3A4 may increase the plasma concentrations of sufentanil, which is primarily metabolized by the isoenzyme. Increased sufentanil concentrations may enhance or prolong pharmacologic effects and potentiate the risk of central nervous system and respiratory depression. In six healthy volunteers, pretreatment with erythromycin (500 mg twice a day for 7 days) had no significant effects on the pharmacokinetics of sufentanil (3 mcg/kg single IV dose) relative to placebo in the nine hours following administration. However, in vitro data suggest that other potent CYP450 3A4 inhibitors (e.g., itraconazole, ketoconazole, ritonavir) may interfere with the metabolism of sufentanil.

MANAGEMENT: Patients receiving sufentanil with potent CYP450 3A4 inhibitors should be carefully monitored for excessive central nervous system and respiratory depression, and dosage adjustments made accordingly if necessary.

References

  1. Bartkowski RR, Goldberg ME, Huffnagle S, Epstein RH (1993) "Sufentanil disposition. Is it affected by erythromycin administration?" Anesthesiology, 78, p. 260-5
  2. (2001) "Product Information. Sufenta (sufentanil)." Janssen Pharmaceuticals
  3. Tateishi T, Krivoruk Y, Ueng YF, Wood AJ, Guengerich FP, Wood M (1996) "Identification of human cytochrome P-450 3A4 as the enzyme responsible for fentanyl and sufentanil N-dealkylation." Anesth Analg, 82, p. 167-72

Switch to consumer interaction data

Minor

ROPivacaine voriconazole

Applies to: ropivacaine / sufentanil and voriconazole

Coadministration with inhibitors of CYP450 3A4 may modestly increase the plasma concentrations of ropivacaine. Although ropivacaine is primarily metabolized by CYP450 1A2, it has been shown to undergo some metabolism via CYP450 3A4. In eight healthy volunteers, pretreatment with the 3A4 inhibitor erythromycin (500 mg three times a day for 6 days) was found to have only minor effects on the pharmacokinetics of a single dose of ropivacaine (0.6 mg/kg IV over 30 minutes) compared to placebo. However, in combination with the potent 1A2 inhibitor fluvoxamine (100 mg daily), erythromycin further increased the area under the plasma concentration-time curve (AUC) of ropivacaine by 50% compared to fluvoxamine alone, which increased the ropivacaine AUC by 3.7-fold. Fluvoxamine alone prolonged the elimination half-life of ropivacaine from 2.3 to 7.4 hours, while the addition of erythromycin further increased the half-life to 11.9 hours. In another study, pretreatment with the potent 3A4 inhibitor ketoconazole (100 mg twice daily for 2 days) decreased the mean total plasma clearance of ropivacaine (40 mg IV over 20 minutes) by just 15% in 12 healthy volunteers. Thus, it appears that CYP450 3A4 inhibitors may only have a significant effect on the pharmacokinetics of ropivacaine in the presence of a CYP450 1A2 inhibitor such as fluvoxamine, ciprofloxacin, or mexiletine.

References

  1. Halldin MM, Bredberg E, Angelin B, Arvidsson T, Askemark Y, Elofsson S, Widman M (1996) "Metabolism and excretion of ropivacaine in humans." Drug Metab Dispos, 24, p. 962-8
  2. Oda Y, Furuichi K, Tanaka K, Hiroi T, Imaoka S, Asada A, Fujimori M, Funae Y (1995) "Metabolism of a new local anesthetic, ropivacaine, by human hepatic cytochrome P450." Anesthesiology, 82, p. 214-20
  3. (2001) "Product Information. Naropin (ropivacaine)." Astra-Zeneca Pharmaceuticals
  4. McClure JH (1996) "Ropivacaine." Br J Anaesth, 76, p. 300-7
  5. Ekstrom G, Gunnarsson UB (1996) "Ropivacaine, a new amide-type local anesthetic agent, is metabolized by cytochromes P450 1A and 3A in human liver microsomes." Drug Metab Dispos, 24, p. 955-61
  6. Arlander E, Ekstrom G, Alm C, Carrillo JA, Bielenstein M, Bottiger Y, Bertilsson L, Gustafsson LL (1998) "Metabolism of ropivacaine in humans is mediated by CYP1A2 and to a minor extent by CYP3A4: An interaction study with fluvoxamine and ketoconazole as in vivo inhibitors." Clin Pharmacol Ther, 64, p. 484-91
  7. Jokinen MJ, Ahonen J, Neuvonen PJ, Olkkola KT (2000) "The effect of erythromycin, fluvoxamine, and their combination on the pharmacokinetics of ropivacaine." Anesth Analg, 91, p. 1207-12
View all 7 references

Switch to consumer interaction data

Drug and food interactions

Moderate

voriconazole food

Applies to: voriconazole

ADJUST DOSING INTERVAL: Food reduces the oral absorption and bioavailability of voriconazole. According to the product labeling, administration of multiple doses of voriconazole with high-fat meals decreased the mean peak plasma concentration (Cmax) and area under the concentration-time curve (AUC) by 34% and 24%, respectively, when the drug is administered as a tablet, and by 58% and 37%, respectively, when administered as the oral suspension.

MANAGEMENT: To ensure maximal oral absorption, voriconazole tablets and oral suspension should be taken at least one hour before or after a meal.

References

  1. (2002) "Product Information. VFEND (voriconazole)." Pfizer U.S. Pharmaceuticals
  2. Wohlt PD, Zheng L, Gunderson S, Balzar SA, Johnson BD, Fish JT (2009) "Recommendations for the use of medications with continuous enteral nutrition." Am J Health Syst Pharm, 66, p. 1438-67

Switch to consumer interaction data

Moderate

SUFentanil food

Applies to: ropivacaine / sufentanil

GENERALLY AVOID: Ethanol may potentiate the central nervous system (CNS) depressant effects of opioid analgesics. Concomitant use may result in additive CNS depression and impairment of judgment, thinking, and psychomotor skills. In more severe cases, hypotension, respiratory depression, profound sedation, coma, or even death may occur.

MANAGEMENT: Concomitant use of opioid analgesics with ethanol should be avoided.

References

  1. Linnoila M, Hakkinen S (1974) "Effects of diazepam and codeine, alone and in combination with alcohol, on simulated driving." Clin Pharmacol Ther, 15, p. 368-73
  2. Sturner WQ, Garriott JC (1973) "Deaths involving propoxyphene: a study of 41 cases over a two-year period." JAMA, 223, p. 1125-30
  3. Girre C, Hirschhorn M, Bertaux L, et al. (1991) "Enhancement of propoxyphene bioavailability by ethanol: relation to psychomotor and cognitive function in healthy volunteers." Eur J Clin Pharmacol, 41, p. 147-52
  4. Levine B, Saady J, Fierro M, Valentour J (1984) "A hydromorphone and ethanol fatality." J Forensic Sci, 29, p. 655-9
  5. Sellers EM, Hamilton CA, Kaplan HL, Degani NC, Foltz RL (1985) "Pharmacokinetic interaction of propoxyphene with ethanol." Br J Clin Pharmacol, 19, p. 398-401
  6. Carson DJ (1977) "Fatal dextropropoxyphene poisoning in Northern Ireland. Review of 30 cases." Lancet, 1, p. 894-7
  7. Rosser WW (1980) "The interaction of propoxyphene with other drugs." Can Med Assoc J, 122, p. 149-50
  8. Edwards C, Gard PR, Handley SL, Hunter M, Whittington RM (1982) "Distalgesic and ethanol-impaired function." Lancet, 2, p. 384
  9. Kiplinger GF, Sokol G, Rodda BE (1974) "Effect of combined alcohol and propoxyphene on human performance." Arch Int Pharmacodyn Ther, 212, p. 175-80
View all 9 references

Switch to consumer interaction data

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Loading...
QR code containing a link to this page

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.