Skip to main content

Drug Interactions between rifampin and Tarka

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Moderate

rifAMPin verapamil

Applies to: rifampin and Tarka (trandolapril / verapamil)

MONITOR: Rifampin may decrease the bioavailability, plasma levels, and pharmacological effects of verapamil. The mechanism is induction of CYP450 3A4 hepatic metabolism by rifampin. One study reported induction of verapamil metabolism continuing at least eight days after the discontinuation of rifampin. Rifabutin is also an enzyme inducer and a similar interaction is expected.

MANAGEMENT: Patients should be closely monitored for clinical efficacy of verapamil during coadministration, and conversely, for excessive calcium channel blockade when the rifamycin is discontinued. Alternative medications may be considered. Patients should be advised to notify their physician if they experience a worsening of their symptoms (e.g., angina, arrhythmia).

References (8)
  1. Venkatesan K (1992) "Pharmacokinetic drug interactions with rifampicin." Clin Pharmacokinet, 22, p. 47-65
  2. Borcherding SM, Baciewicz AM, Self TH (1992) "Update on rifampin drug interactions." Arch Intern Med, 152, p. 711-6
  3. Barbarash RA, Bauman JL, Fischer JH, et al. (1988) "Near-total reduction in verapamil bioavailability by rifampin: electrocardiographic correlates." Chest, 94, p. 954-9
  4. Barbarash RA (1985) "Verapamil-rifampin interaction." Drug Intell Clin Pharm, 19, p. 559-60
  5. McTavish D, Sorkin EM (1989) "Verapamil: an updated review of its pharmacodynamic and pharmacokinetic properties, and therapeutic use in hypertension." Drugs, 38, p. 19-76
  6. Tada Y, Tsuda Y, Otsuka T, et al. (1992) "Case report: nifedipine-rifampicin interaction attenuates the effect on blood pressure in a patient with essential hypertension." Am J Med Sci, 303, p. 25-7
  7. Fromm MF, Busse D, Kroemer HK, Eichelbaum M (1996) "Differential induction of prehepatic and hepatic metabolism of verapamil by rifampin." Hepatology, 24, p. 796-801
  8. Strayhorn VA, Baciewicz AM, Self TH (1997) "Update on rifampin drug interactions, III." Arch Intern Med, 157, p. 2453-8
Moderate

rifAMPin trandolapril

Applies to: rifampin and Tarka (trandolapril / verapamil)

MONITOR: Coadministration of rifampin with agents known to induce hepatotoxicity may potentiate the risk of liver injury. There are various possible mechanisms related to rifampin-associated hepatotoxicity described in product labeling and medical literature, however no consensus has been made. These include increased mitochondrial oxidative stress, apoptotic liver cell injury (in rodent studies), the development of cholestasis, hepatic lipid accumulation, and elevated toxic metabolites caused by rifampin-mediated induction of cytochrome P450 enzymes. Cases of drug-induced liver injury (including fatal cases) have been reported within the first few days to months following rifampin treatment initiation. Additional data suggests that 1-2% of patients receiving rifampin monotherapy for tuberculosis prophylaxis experience hepatotoxicity. The severity of hepatotoxicity from rifampin ranges from asymptomatic elevations in liver enzymes, jaundice and/or hyperbilirubinemia, and symptomatic self-limiting hepatitis to fulminant liver failure and death. In most cases, liver function recovers upon on discontinuation of rifampin treatment, however, progression to acute liver failure requiring liver transplantation is possible. Known risk factors that may predispose the patient to rifampin related hepatotoxicity include: coadministration with other hepatotoxic agents, alcoholism, existing liver disease, malnutrition, extensive liver tuberculosis, liver adenocarcinoma and biliary tract neoplasm. Clinical data have been reported with concurrent use of rifampin with other antituberculosis agents (e.g. isoniazid, pyrazinamide), acetaminophen, antiretroviral agents (e.g., saquinavir/ritonavir) and halothane. Data with other hepatotoxic agents are limited.

MANAGEMENT: Caution and close clinical monitoring should be considered if rifampin is coadministered with other hepatotoxic medications. In addition, the manufacturer recommends patients with impaired liver function only be given rifampin in cases of necessity and then under strict medical supervision. Some authorities consider rifampin treatment in patients with existing liver injury contraindicated (Canada). In cases where coadministration of rifampin with hepatotoxic agents is required, careful monitoring of liver function, especially ALT and AST, should be done prior to therapy and then every 2 to 4 weeks during therapy. If hepatic damage is suspected, rifampin should be immediately discontinued. Furthermore, if hepatitis is attributed to rifampin in patients with tuberculosis, alternative agents should be considered. Patients should be instructed to contact their physician immediately if they experience symptoms such as itching, weakness, loss of appetite, nausea, vomiting, abdominal pain, yellowing of the eyes or skin or dark urine.

References (7)
  1. Tostmann A, Boeree MJ, Aarnoutse RE, De Lange WCM, Van Der Ven AJAM, Dekhuijzen R (2024) Antituberculosis drug-induced hepatotoxicity: concise up-to-date review https://onlinelibrary.wiley.com/doi/10.1111/j.1440-1746.2007.05207.x
  2. (2022) "Product Information. Rifampin (rifAMPin)." Akorn Inc
  3. (2022) "Product Information. Rifampicin (rifampicin)." Mylan Pharmaceuticals Inc
  4. (2023) "Product Information. Rifadin (rifampicin)." Sanofi
  5. (2024) "Product Information. Rifadin (rifaMPICin)." Sanofi-Aventis Australia Pty Ltd
  6. Zhuang X, Li L, liu t, zhang r, Yang P, Wang X, et al. (2024) Mechanisms of isoniazid and rifampicin-induced liver injury and the effects of natural medicinal ingredients: A review https://www.frontiersin.org/journals/pharmacology/articles/10.3389/fphar.2022.1037814/full
  7. (2019) "Product Information. Rofact (rifampin)." Bausch Health, Canada Inc.
Minor

verapamil trandolapril

Applies to: Tarka (trandolapril / verapamil) and Tarka (trandolapril / verapamil)

Calcium channel blockers and angiotensin converting enzyme (ACE) inhibitors may have additive hypotensive effects. While these drugs are often safely used together, careful monitoring of the systemic blood pressure is recommended during coadministration, especially during the first one to three weeks of therapy.

References (4)
  1. Kaplan NM (1991) "Amlodipine in the treatment of hypertension." Postgrad Med J, 67 Suppl 5, s15-9
  2. DeQuattro V (1991) "Comparison of benazepril and other antihypertensive agents alone and in combination with the diuretic hydrochlorothiazide." Clin Cardiol, 14, iv28-32;
  3. Sun JX, Cipriano A, Chan K, John VA (1994) "Pharmacokinetic interaction study between benazepril and amlodipine in healthy subjects." Eur J Clin Pharmacol, 47, p. 285-9
  4. Di Somma S, et al. (1992) "Antihypertensive effects of verapamil, captopril and their combination at rest and during dynamic exercise." Arzneimittelforschung, 42, p. 103

Drug and food interactions

Moderate

rifAMPin food

Applies to: rifampin

GENERALLY AVOID: Concurrent use of rifampin in patients who ingest alcohol daily may result in an increased incidence of hepatotoxicity. The increase in hepatotoxicity may be due to an additive risk as both alcohol and rifampin are individually associated with this adverse reaction. However, the exact mechanism has not been established.

ADJUST DOSING INTERVAL: Administration with food may reduce oral rifampin absorption, increasing the risk of therapeutic failure or resistance. In a randomized, four-period crossover phase I study of 14 healthy male and female volunteers, the pharmacokinetics of single dose rifampin 600 mg were evaluated under fasting conditions and with a high-fat meal. Researchers observed that administration of rifampin with a high-fat meal reduced rifampin peak plasma concentration (Cmax) by 36%, nearly doubled the time to reach peak plasma concentration (Tmax) but reduced overall exposure (AUC) by only 6%.

MANAGEMENT: The manufacturer of oral forms of rifampin recommends administration on an empty stomach, 30 minutes before or 2 hours after meals. Patients should be encouraged to avoid alcohol or strictly limit their intake. Patients who use alcohol and rifampin concurrently or have a history of alcohol use disorder may require additional monitoring of their liver function during treatment with rifampin.

References (6)
  1. (2022) "Product Information. Rifampin (rifAMPin)." Akorn Inc
  2. (2022) "Product Information. Rifampicin (rifampicin)." Mylan Pharmaceuticals Inc
  3. (2023) "Product Information. Rifadin (rifampicin)." Sanofi
  4. (2024) "Product Information. Rifadin (rifaMPICin)." Sanofi-Aventis Australia Pty Ltd
  5. Peloquin CA, Namdar R, Singleton MD, Nix DE (2024) Pharmacokinetics of rifampin under fasting conditions, with food, and with antacids https://pubmed.ncbi.nlm.nih.gov/9925057/
  6. (2019) "Product Information. Rofact (rifampin)." Bausch Health, Canada Inc.
Moderate

verapamil food

Applies to: Tarka (trandolapril / verapamil)

GENERALLY AVOID: Consumption of large quantities of grapefruit juice may be associated with significantly increased plasma concentrations of oral verapamil. The mechanism is inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall by certain compounds present in grapefruits. One study reported no significant effect of a single administration of grapefruit juice on the pharmacokinetics of verapamil in ten hypertensive patients receiving chronic therapy. In another study conducted in nine healthy male volunteers, administration of 120 mg oral verapamil twice daily for 3 days following pretreatment with 200 mL grapefruit juice twice daily for 5 days resulted in a 57% increase in S-verapamil peak plasma concentration (Cmax), a 36% increase in S-verapamil systemic exposure (AUC), a 40% increase in R-verapamil Cmax, and a 28% increase in R-verapamil AUC compared to administration following orange juice. Elimination half-life and renal clearance of both S- and R-verapamil were not affected by grapefruit juice, and there were no significant effects on blood pressure, heart rate, or PR interval. A third study reported a 1.63-fold increase in Cmax and a 1.45-fold increase in AUC of (R,S)-verapamil in 24 young, healthy volunteers given verapamil sustained-release 120 mg twice daily for 7 days with 250 mL grapefruit juice four times daily on days 5 through 7. Two subjects developed PR interval prolongation of more than 350 ms during grapefruit juice coadministration. A high degree of interindividual variability has been observed in these studies. The interaction was also suspected in a case report of a 42-year-old woman who developed complete heart block, hypotension, hypoxic respiratory failure, severe anion gap metabolic acidosis, and hyperglycemia following accidental ingestion of three verapamil sustained-release 120 mg tablets over a span of six hours. The patient's past medical history was remarkable only for migraine headaches, for which she was receiving several medications including verapamil. Prior to admission, the patient had a 2-week history of poorly controlled migraine, and the six hours preceding hospitalization she suffered from worsening headache and palpitations progressing to altered sensorium. An extensive workup revealed elevated verapamil and norverapamil levels more than 4.5 times above the upper therapeutic limits. These levels also far exceeded those reported in the medical literature for patients taking verapamil 120 mg every 6 hours, or 480 mg in a 24-hour period. The patient recovered after receiving ventilator and vasopressor support. Upon questioning, it was discovered that the patient had been drinking large amounts of grapefruit juice (3 to 4 liters total) the week preceding her admission due to nausea. No other sources or contributing factors could be found for the verapamil toxicity.

MANAGEMENT: Patients treated with oral verapamil should avoid the consumption of large amounts of grapefruit or grapefruit juice to prevent any undue fluctuations in serum drug levels. Patients should be advised to seek medical attention if they experience edema or swelling of the lower extremities; sudden, unexplained weight gain; difficulty breathing; chest pain or tightness; or hypotension as indicated by dizziness, fainting, or orthostasis.

References (9)
  1. McAllister RG, Jr (1982) "Clinical pharmacology of slow channel blocking agents." Prog Cardiovasc Dis, 25, p. 83-102
  2. (2001) "Product Information. Covera-HS (verapamil)." Searle
  3. Zaidenstein R, Dishi V, Gips M, Soback S, Cohen N, Weissgarten J, Blatt A, Golik A (1998) "The effect of grapefruit juice on the pharmacokinetics of orally administered verapamil." Eur J Clin Pharmacol, 54, p. 337-40
  4. Ho PC, Ghose K, Saville D, Wanwimolruk S (2000) "Effect of grapefruit juice on pharmacokinetics and pharmacodynamics of verapamil enantiomers in healthy volunteers." Eur J Clin Pharmacol, 56, p. 693-8
  5. Fuhr U, Muller-Peltzer H, Kern R, et al. (2002) "Effects of grapefruit juice and smoking on verapamil concentrations in steady state." Eur J Clin Pharmacol, 58, p. 45-53
  6. Bailey DG, Dresser GK (2004) "Natural products and adverse drug interactions." Can Med Assoc J, 170, p. 1531-2
  7. Bailey DG, Malcolm J, Arnold O, Spence JD (2004) "Grapefruit juice-drug interactions. 1998." Br J Clin Pharmacol, 58, S831-40; discussion S841-3
  8. Arayne MS, Sultana N, Bibi Z (2005) "Review: grape fruit juice - drug interactions." Pak J Pharm Sci, 18, p. 45-57
  9. Pillai U, Muzaffar J, Sandeep S, Yancey A (2009) "Grapefruit juice and verapamil: a toxic cocktail." South Med J, 102, p. 308-9
Moderate

trandolapril food

Applies to: Tarka (trandolapril / verapamil)

GENERALLY AVOID: Moderate-to-high dietary intake of potassium can cause hyperkalemia in some patients who are using angiotensin converting enzyme (ACE) inhibitors. In some cases, affected patients were using a potassium-rich salt substitute. ACE inhibitors can promote hyperkalemia through inhibition of the renin-aldosterone-angiotensin (RAA) system.

MANAGEMENT: It is recommended that patients who are taking ACE inhibitors be advised to avoid moderately high or high potassium dietary intake. Particular attention should be paid to the potassium content of salt substitutes.

References (3)
  1. (2002) "Product Information. Vasotec (enalapril)." Merck & Co., Inc
  2. Good CB, McDermott L (1995) "Diet and serum potassium in patients on ACE inhibitors." JAMA, 274, p. 538
  3. Ray K, Dorman S, Watson R (1999) "Severe hyperkalaemia due to the concomitant use of salt substitutes and ACE inhibitors in hypertension: a potentially life threatening interaction." J Hum Hypertens, 13, p. 717-20
Moderate

verapamil food

Applies to: Tarka (trandolapril / verapamil)

GENERALLY AVOID: Verapamil may increase the blood concentrations and intoxicating effects of ethanol. The exact mechanism of interaction is unknown but may involve verapamil inhibition of ethanol metabolism. In 10 healthy, young volunteers, verapamil (80 mg orally every 8 hours for 6 days) increased the mean peak blood concentration (Cmax) and the 12-hour area under the concentration-time curve (AUC) of ethanol (0.8 g/kg single oral dose) by 17% and 30%, respectively, compared to placebo. Verapamil AUCs were positively correlated to increased ethanol blood AUC values. Subjectively (i.e. each subject's perception of intoxication as measured on a visual analog scale), verapamil also significantly increased the area under the ethanol effect versus time curve but did not change the peak effect or time to peak effect.

MANAGEMENT: Patients treated with verapamil should be counseled to avoid alcohol consumption.

References (2)
  1. Bauer LA, Schumock G, Horn J, Opheim K (1992) "Verapamil inhibits ethanol elimination and prolongs the perception of intoxication." Clin Pharmacol Ther, 52, p. 6-10
  2. (2001) "Product Information. Isoptin (verapamil)." Knoll Pharmaceutical Company
Moderate

verapamil food

Applies to: Tarka (trandolapril / verapamil)

MONITOR: Calcium-containing products may decrease the effectiveness of calcium channel blockers by saturating calcium channels with calcium. Calcium chloride has been used to manage acute severe verapamil toxicity.

MANAGEMENT: Management consists of monitoring the effectiveness of calcium channel blocker therapy during coadministration with calcium products.

References (14)
  1. Henry M, Kay MM, Viccellio P (1985) "Cardiogenic shock associated with calcium-channel and beta blockers: reversal with intravenous calcium chloride." Am J Emerg Med, 3, p. 334-6
  2. Moller IW (1987) "Cardiac arrest following intravenous verapamil combined with halothane anaesthesia." Br J Anaesth, 59, p. 522-6
  3. Oszko MA, Klutman NE (1987) "Use of calcium salts during cardiopulmonary resuscitation for reversing verapamil-associated hypotension." Clin Pharm, 6, p. 448-9
  4. Schoen MD, Parker RB, Hoon TJ, et al. (1991) "Evaluation of the pharmacokinetics and electrocardiographic effects of intravenous verapamil with intravenous calcium chloride pretreatment in normal subjects." Am J Cardiol, 67, p. 300-4
  5. O'Quinn SV, Wohns DH, Clarke S, Koch G, Patterson JH, Adams KF (1990) "Influence of calcium on the hemodynamic and anti-ischemic effects of nifedipine observed during treadmill exercise testing." Pharmacotherapy, 10, p. 247
  6. Woie L, Storstein L (1981) "Successful treatment of suicidal verapamil poisoning with calcium gluconate." Eur Heart J, 2, p. 239-42
  7. Morris DL, Goldschlager N (1983) "Calcium infusion for reversal of adverse effects of intravenous verapamil." JAMA, 249, p. 3212-3
  8. Guadagnino V, Greengart A, Hollander G, Solar M, Shani J, Lichstein E (1987) "Treatment of severe left ventricular dysfunction with calcium chloride in patients receiving verapamil." J Clin Pharmacol, 27, p. 407-9
  9. Luscher TF, Noll G, Sturmer T, Huser B, Wenk M (1994) "Calcium gluconate in severe verapamil intoxication." N Engl J Med, 330, p. 718-20
  10. Bar-Or D, Gasiel Y (1981) "Calcium and calciferol antagonise effect of verapamil in atrial fibrillation." Br Med J (Clin Res Ed), 282, p. 1585-6
  11. Lipman J, Jardine I, Roos C, Dreosti L (1982) "Intravenous calcium chloride as an antidote to verapamil-induced hypotension." Intensive Care Med, 8, p. 55-7
  12. McMillan R (1988) "Management of acute severe verapamil intoxication." J Emerg Med, 6, p. 193-6
  13. Perkins CM (1978) "Serious verapamil poisoning: treatment with intravenous calcium gluconate." Br Med J, 2, p. 1127
  14. Moroni F, Mannaioni PF, Dolara A, Ciaccheri M (1980) "Calcium gluconate and hypertonic sodium chloride in a case of massive verapamil poisoning." Clin Toxicol, 17, p. 395-400

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.