Drug Interactions between revumenib and trimipramine
This report displays the potential drug interactions for the following 2 drugs:
- revumenib
- trimipramine
Interactions between your drugs
trimipramine revumenib
Applies to: trimipramine and revumenib
GENERALLY AVOID: Revumenib causes dose-related prolongation of the QT interval. Coadministration with other agents that can prolong the QT interval may result in additive effects and an increased risk of ventricular arrhythmias including torsade de pointes and sudden death. In clinical trials, QT interval prolongation was reported as an adverse reaction in 29% of patients treated with revumenib at the recommended dosage for relapsed or refractory acute leukemia with a KMT2A translocation. Additionally, Grade 3 QT interval prolongation occurred in 12% of those patients and a greater than 60 msec increase in Fridericia-corrected QT interval (QTcF) from baseline was reported in 18% of patients. In general, the risk of an individual agent or a combination of agents causing ventricular arrhythmia in association with QT prolongation is largely unpredictable but may be increased by certain underlying risk factors such as congenital long QT syndrome, cardiac disease, and electrolyte disturbances (e.g., hypokalemia, hypomagnesemia, hypocalcemia). Moreover, the extent of drug-induced QT prolongation is dependent on the particular drug(s) involved and dosage(s) of the drug(s).
MANAGEMENT: It is recommended to avoid revumenib in combination with other drugs that can prolong the QT interval. If concomitant use cannot be avoided, obtain electrocardiograms (ECGs) when initiating, during concomitant use, and as clinically indicated. Serum electrolytes, including potassium, magnesium, and calcium, should be monitored before starting revumenib therapy and monthly during treatment. Revumenib should not be started if baseline QTc is greater than 450 msec. Likewise, treatment should be interrupted and adjusted in accordance with the product labeling in patients who develop QTc prolongation greater than 480 msec. Patients should be advised to seek prompt medical attention if they experience symptoms that could indicate the occurrence of torsade de pointes such as dizziness, lightheadedness, fainting, palpitation, irregular heart rhythm, shortness of breath, or syncope. Permanently discontinue revumenib in patients who develop QTc interval prolongation with life-threatening arrhythmia.
References (1)
- (2024) "Product Information. Revuforj (revumenib)." Syndax Pharmaceuticals, Inc
Drug and food interactions
revumenib food
Applies to: revumenib
ADJUST DOSING INTERVAL: In pharmacokinetic studies, revumenib was administered while fasting or with a low fat meal. Revumenib has not been studied with meals of higher fat content and the impact on its pharmacokinetic parameters is unknown.
MONITOR: Grapefruit, grapefruit juice, grapefruit hybrids, pomelos, star-fruit, and Seville oranges may increase the plasma concentrations of revumenib. The proposed mechanism is inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall by certain compounds present in grapefruits. The extent and clinical significance are unknown. In pharmacokinetic studies in patients with relapsed or refractory acute leukemia, revumenib area under the concentration-time curve (AUC) and peak plasma concentration (Cmax) increased 2-fold following concomitant use with the potent CYP450 3A4 inhibitors posaconazole, itraconazole, and voriconazole, and 2.5-fold following concomitant use with the potent CYP450 3A4 inhibitor cobicistat. However, clinically significant differences in revumenib pharmacokinetics were not observed when used concomitantly with the moderate CYP450 3A4 inhibitors fluconazole and isavuconazole. In general the effect of grapefruit juice is concentration-, dose- and preparation-dependent, and can vary widely among brands. Certain preparations of grapefruit juice (e.g., high dose, double strength) have sometimes demonstrated potent inhibition of CYP450 3A4, while other preparations (e.g., low dose, single strength) have typically demonstrated moderate inhibition. Moreover, pharmacokinetic alterations associated with interactions involving grapefruit juice are often subject to a high degree of interpatient variability. Increased exposure to revumenib may increase the risk of QT interval prolongation, which has been associated with ventricular arrhythmias including torsade de pointes and sudden death.
MANAGEMENT: Due to the potential impact of high fat content meals on revumenib absorption and exposure, it is recommended that revumenib be administered while fasting or with a low fat meal (approximately 400-500 calories, with 25% of calories from fat). In addition, if grapefruit, grapefruit juice, grapefruit hybrids, pomelos, star-fruit, or Seville oranges are consumed during treatment with revumenib, assess patient tolerability and monitor for serious adverse effects (e.g., QT prolongation and torsade de pointes arrhythmia, differentiation syndrome, neutropenia, thrombocytopenia).
References (2)
- (2024) "Product Information. Quinoric (hydroxychloroquine)." Bristol Laboratories Ltd
- (2024) "Product Information. Revuforj (revumenib)." Syndax Pharmaceuticals, Inc
trimipramine food
Applies to: trimipramine
GENERALLY AVOID: Concomitant use of ethanol and a tricyclic antidepressant (TCA) may result altered TCA plasma levels and efficacy, and additive impairment of motor skills, especially driving skills. Acute ethanol ingestion may inhibit TCA metabolism, while chronic ingestion of large amounts of ethanol may induce hepatic TCA metabolism.
MANAGEMENT: Patients should be advised to avoid alcohol during TCA therapy. Alcoholics who have undergone detoxification should be monitored for decreased TCA efficacy. Dosage adjustments may be required.
References (7)
- Dorian P, Sellers EM, Reed KL, et al. (1983) "Amitriptyline and ethanol: pharmacokinetic and pharmacodynamic interaction." Eur J Clin Pharmacol, 25, p. 325-31
- Warrington SJ, Ankier SI, Turner P (1986) "Evaluation of possible interactions between ethanol and trazodone or amitriptyline." Neuropsychobiology, 15, p. 31-7
- Sandoz M, Vandel S, Vandel B, Bonin B, Allers G, Volmat R (1983) "Biotransformation of amitriptyline in alcoholic depressive patients." Eur J Clin Pharmacol, 24, p. 615-21
- Ciraulo DA, Barnhill JG, Jaffe JH (1988) "Clinical pharmacokinetics of imipramine and desipramine in alcoholics and normal volunteers." Clin Pharmacol Ther, 43, p. 509-18
- Seppala T, Linnoila M, Elonen E, Mattila MJ, Makl M (1975) "Effect of tricyclic antidepressants and alcohol on psychomotor skills related to driving." Clin Pharmacol Ther, 17, p. 515-22
- Ciraulo DA, Barnhill JG, Jaffe JH, Ciraulo AM, Tarmey MF (1990) "Intravenous pharmacokinetics of 2-hydroxyimipramine in alcoholics and normal controls." J Stud Alcohol, 51, p. 366-72
- Ciraulo DA, Alderson LM, Chapron DJ, Jaffe JH, Subbarao B, Kramer PA (1982) "Imipramine disposition in alcoholics." J Clin Psychopharmacol, 2, p. 2-7
Therapeutic duplication warnings
No warnings were found for your selected drugs.
Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.
See also
Drug Interaction Classification
Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit. | |
Moderately clinically significant. Usually avoid combinations; use it only under special circumstances. | |
Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan. | |
No interaction information available. |
Further information
Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.
Check Interactions
To view an interaction report containing 4 (or more) medications, please sign in or create an account.
Save Interactions List
Sign in to your account to save this drug interaction list.