Skip to main content

Drug Interactions between repaglinide and Uricalm Intensive

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Moderate

aspirin repaglinide

Applies to: Uricalm Intensive (acetaminophen / aspirin / caffeine) and repaglinide

MONITOR: The hypoglycemic effect of insulin secretagogues (e.g., sulfonylureas, meglitinides) may be potentiated by certain drugs, including ACE inhibitors, 4-aminoquinolines, amylin analogs, anabolic steroids, fibrates, monoamine oxidase inhibitors (MAOIs, including linezolid), nonsteroidal anti-inflammatory drugs (NSAIDs), salicylates, selective serotonin reuptake inhibitors (SSRIs), sulfonamides, disopyramide, propoxyphene, quinine, quinidine, and ginseng. These drugs may increase the risk of hypoglycemia by enhancing insulin sensitivity (ACE inhibitors, fibrates, ginseng); stimulating insulin secretion (salicylates, NSAIDs, disopyramide, quinine, quinidine, MAOIs, ginseng); decreasing insulin clearance and resistance (4-aminoquinolines); increasing peripheral glucose utilization (SSRIs, insulin-like growth factor); inhibiting gluconeogenesis (SSRIs, MAOIs, insulin-like growth factor); slowing the rate of gastric emptying (amylin analogs); and/or suppressing postprandial glucagon secretion (amylin analogs). Or, they may increase plasma concentration of insulin secretagogues by displacing them from plasma protein binding sites and/or inhibiting their metabolism (fibrates, NSAIDs, salicylates, sulfonamides). Clinical hypoglycemia has been reported during use of some of these agents alone or with insulin and/or sulfonylureas. Use of SSRIs has also been associated with loss of awareness of hypoglycemia in isolated cases.

MANAGEMENT: Close monitoring for the development of hypoglycemia is recommended if these drugs are coadministered with insulin secretagogues, particularly in patients with advanced age and/or renal impairment. The oral antidiabetic dosage(s) may require adjustment if an interaction is suspected. Patients should be apprised of the signs and symptoms of hypoglycemia (e.g., headache, dizziness, drowsiness, nausea, hunger, tremor, weakness, sweating, palpitations), how to treat it, and to contact their doctor if it occurs. Patients should be observed for loss of glycemic control when these drugs are withdrawn.

References

  1. Petitpierre B, Perrin L, Rudhardt M, et al. (1972) "Behaviour of chlorpropamide in renal insufficiency and under the effect of associated drug therapy." Int J Clin Pharmacol, 6, p. 120-4
  2. Daubresse JC, Luyckx AS, Lefebvre PJ (1976) "Potentiation of hypoglycemic effect of sulfonylureas by clofibrate." N Engl J Med, 294, p. 613
  3. Salmela PI, Sotaniemi EA, Viikari J, et al. (1981) "Fenfluramine therapy in non-insulin-dependent diabetic patients effects on body weight, glucose homeostasis, serum lipoproteins, and antipyrine metabolism." Diabetes Care, 4, p. 535-40
  4. Verdy M, Charbonneau L, Verdy I, Belanger R, Bolte E, Chiasson JL (1983) "Fenfluramine in the treatment of non-insulin-dependent diabetics: hypoglycemic versus anorectic effect." Int J Obes, 7, p. 289-97
  5. Shah SJ, Bhandarkar SD, Satoskar RS (1984) "Drug interaction between chlorpropamide and non-steroidal anti-flammatory drugs, ibuprofen and phenylbutazone." Int J Clin Pharmacol Ther Toxicol, 22, p. 470-2
  6. Baciewicz AM, Swafford WB Jr (1984) "Hypoglycemia induced by the interaction of chlorpropamide and co-trimoxazole." Drug Intell Clin Pharm, 18, p. 309-10
  7. Richardson T, Foster J, Mawer GE (1986) "Enhancement by sodium salicylate of the blood glucose lowering effect of chlorpropamide-drug interaction or summation of similar effects." Br J Clin Pharmacol, 22, p. 43-8
  8. Johnson J, Dobmeier M (1990) "Symptomatic hypoglycemia secondary to a glipizide-trimethoprim/sulfamethoxazole drug interaction." DICP, 24, p. 250-1
  9. Field JB, Ohta M, Boyle C, Remer A (1967) "Potentiation of acetohexamide hypoglycemia by phenylbutazone." N Engl J Med, 277, p. 889-94
  10. Goldberg IJ, Brown LK, Rayfield EJ (1980) "Disopyramide (norpace)-induced hypoglycemia." Am J Med, 69, p. 463-6
  11. Quevedo SF, Krauss DS, Chazan JA, et al. (1981) "Fasting hypoglycemia secondary to disopyramide therapy." JAMA, 245, p. 2424
  12. Semel JD, Wortham E, Karl DM (1983) "Fasting hypoglycemia associated with disopyramide." Am Heart J, 106, p. 1160-1
  13. Nappi JM, Dhanani S, Lovejoy JR, VanderArk C (1983) "Severe hypoglycemia associated with disopyramide." West J Med, 138, p. 95-7
  14. Rubin M, Zakheim B, Pitchumoni C (1983) "Disopyramide-induced profound hypoglycemia." N Y State J Med, July,Aug,S, p. 1057-8
  15. Croxson MS, Shaw DW, Henley PG, Gabriel HDLL (1987) "Disopyramide-induced hypoglycaemia and increased serum insulin." N Z Med J, July, p. 407-8
  16. Giugliano D, Ceriello A, Saccomanno F, et al. (1985) "Effects of salicylate, tolbutamide, and prostaglandin E2 on insulin responses to glucose in noninsulin-dependent diabetes mellitus." J Clin Endocrinol Metab, 61, p. 160-6
  17. Wiederholt IC, Genco M, Foley JM (1967) "Recurrent episodes of hypoglycemia induced by propoxyphene." Neurology, 17, p. 703-6
  18. Barbato M (1984) "Another problem with Kinidin." Med J Aust, 141, p. 685
  19. Arauz-Pacheco C, Ramirez LC, Rios JM, Raskin P (1990) "Hypoglycemia induced by angiotensin-converting enzyme inhibitors in patients with non-insulin-dependent diabetes receiving sulfonylurea therapy." Am J Med, 89, p. 811-3
  20. Murakami K, Nambu S, Koh H, Kobayashi M, Shigeta Y (1984) "Clofibrate enhances the affinity of insulin receptors in non-insulin dependent diabetes mellitus." Br J Clin Pharmacol, 17, p. 89-91
  21. Daubresse JC, Daigneux D, Bruwier M, Luyckx A, Lefebvre PJ (1979) "Clofibrate and diabetes control in patients treated with oral hypoglycaemic agents." Br J Clin Pharmacol, 7, p. 599-603
  22. Whitcroft IA, Thomas JM, Rawsthorne A, et al. (1990) "Effects of alpha and beta adrenoceptor blocking drugs and ACE inhibitors on long term glucose and lipid control in hypertensive non-insulin dependent diabetics." Horm Metab Res Suppl, 22, p. 42-6
  23. Ravic M, Johnston A, Turner P (1990) "Clinical pharmacological studies of some possible interactions of lornoxicam with other drugs." Postgrad Med J, 66, s30-4
  24. Ahmad S (1991) "Gemfibrozil: interaction with glyburide." South Med J, 84, p. 102
  25. Konttinen A, Kuisma I, Ralli R, Pohjola S, Ojala K (1979) "The effect of gemfibrozil on serum lipids in diabetic patients." Ann Clin Res, 11, p. 240-5
  26. de Salcedo I, Gorringe AL, Silva JL, Santos JA (1976) "Gemfibrozil in a group of diabetics." Proc R Soc Med, 69, p. 64-70
  27. Nikkila EA, Ylikahri R, Huttunen JK (1976) "Gemfibrozil: effect on serum lipids, lipoproteins, postheparin plasma lipase activities and glucose tolerance in primary hypertriglyceridaemia." Proc R Soc Med, 69, p. 58-63
  28. Phillips RE, Looareesuwan S, White NJ, et al. (1986) "Hypoglycaemia and antimalarial drugs: quinidine and release of insulin." Br Med J, 292, p. 1319-21
  29. Davis TM, Karbwang J, Looareesuwan S, et al. (1990) "Comparative effects of quinine and quinidine on glucose metabolism in healthy volunteers." Br J Clin Pharmacol, 30, p. 397-403
  30. Wu B, Sato T, Kiyosue T, Arita M (1992) "Blockade of 2,4-dinitrophenol induced ATP sensitive potassium current in guinea pig ventricular myocytes by class I antiarrhythmic drugs." Cardiovasc Res, 26, p. 1095-101
  31. Nakabayashi H, Ito T, Igawa T, Hiraiwa Y, Imamura T, Seta T, Kawato M, Usukura N, Takeda R (1989) "Disopyramide induces insulin secretion and plasma glucose diminution: studies using the in situ canine pancreas." Metabolism, 38, p. 179-83
  32. Strathman I, Schubert EN, Cohen A, Nitzberg DM (1983) "Hypoglycemia in patients receiving disopyramide phosphate." Drug Intell Clin Pharm, 17, p. 635-8
  33. Cacoub P, Deray G, Baumelou A, Grimaldi A, Soubrie C, Jacobs C (1989) "Disopyramide-induced hypoglycemia: case report and review of the literature." Fundam Clin Pharmacol, 3, p. 527-35
  34. Wing LM, Miners JO (1985) "Cotrimoxazole as an inhibitor of oxidative drug metabolism: effects of trimethoprim and sulphamethoxazole separately and combined on tolbutamide disposition." Br J Clin Pharmacol, 20, p. 482-5
  35. Lumholtz B, Siersbaek-Nielsen K, Skovsted L, Kampmann J, Hansen JM (1975) "Sulfamethizole-induced inhibition of diphenylhydantoin, tolbutamide, and warfarin metabolism." Clin Pharmacol Ther, 17, p. 731-4
  36. Asplund K, Wiholm BE, Lithner F (1983) "Glibenclamide-associated hypoglycaemia: a report on 57 cases." Diabetologia, 24, p. 412-7
  37. Sjoberg S, Wiholm BE, Gunnarsson R, Emilsson H, Thunberg E, Christenson I, Ostman J (1987) "Lack of pharmacokinetic interaction between glibenclamide and trimethoprim-sulphamethoxazole." Diabet Med, 4, p. 245-7
  38. Diwan PV, Sastry MS, Satyanarayana NV (1992) "Potentiation of hypoglycemic response of glibenclamide by piroxicam in rats and humans." Indian J Exp Biol, 30, p. 317-9
  39. Tannenbaum H, Anderson LG, Soeldner JS (1974) "Phenylbutazone-tolbutamide drug interaction." N Engl J Med, 290, p. 344
  40. Slade IH, and Iosefa RN (1967) "Fatal hypoglycemic coma from the use of tolbutamide in elderly patients: report of two cases." J Am Geriatr Soc, 15, p. 948-50
  41. David DS, Steere AC Jr, Pi-Sunyer XF, Sakai S, Clark SB (1971) "Aspirin-induced hypoglycaemia in a patient on haemodialysis." Lancet, 2, p. 1092-3
  42. Cattaneo AG, Caviezel F, Pozza G (1990) "Pharmacological interaction between tolbutamide and acetylsalicylic acid: study on insulin secretion in man." Int J Clin Pharmacol Ther Toxicol, 28, p. 229-34
  43. Pond SM, Birkett DJ, Wade DN (1977) "Mechanisms of inhibition of tolbutamide metabolism: phenylbutazone, oxyphenbutazone, sulfaphenazole." Clin Pharmacol Ther, 22, p. 573-9
  44. Christensen LK, Hansen JM, Kristensen M (1963) "Sulphaphenazole-induced hypoglycemic attacks in tolbutamide-treated diabetics." Lancet, 2, p. 1298-301
  45. Harris EL (1971) "Adverse reactions to oral antidiabetic agents." Br Med J, 3, p. 29-30
  46. (2002) "Product Information. Diabinese (chlorpropamide)." Pfizer U.S. Pharmaceuticals
  47. (2002) "Product Information. Glucotrol (glipizide)." Pfizer U.S. Pharmaceuticals
  48. "Product Information. Diabeta (glyburide)." Hoechst Marion-Roussel Inc, Kansas City, MO.
  49. (2002) "Product Information. Micronase (glyburide)." Pharmacia and Upjohn
  50. Turtle JR, Burgess JA (1973) "Hypoglycemic action of fenfluramine in diabetes mellitus." Diabetes, 22, p. 858-67
  51. Ferriere M, Lachkar H, Richard JL, Bringer J, Orsetti A, Mirouze J (1985) "Captopril and insulin sensitivity." Ann Intern Med, 102, p. 134-5
  52. Johnson JA, Kappel JE, Sharif MN (1993) "Hypoglycemia secondary to trimethoprim/sulfamethoxazole administration in a renal transplant patient." Ann Pharmacother, 27, p. 304-6
  53. Almirall J, Montoliu J, Torras A, Revert L (1989) "Propoxyphene-induced hypoglycemia in a patient with chronic renal failure." Nephron, 53, p. 273-5
  54. Hayashi S, Horie M, Tsuura Y, Ishida H, Okada Y, Seino Y, Sasayama S (1993) "Disopyramide blocks pancreatic ATP-sensitive K+ channels and enhances insulin release." Am J Physiol, 265, c337-42
  55. Phillips AF, Matty PJ, Porte PJ, Raye JR (1984) "Inhibition of glucose-induced insulin secretion by indomethacin and sodium salicylate in the fetal lamb." Am J Obstet Gynecol, 148, p. 481-7
  56. Baron SH (1982) "Salicylates as hypoglycemic agents." Diabetes Care, 5, p. 64-71
  57. Prince RL, Larkins RG, Alford FP (1981) "The effect of acetylsalicylic acid on plasma glucose and the response of glucose regulatory hormones to intravenous glucose and arginine in insulin treated diabetics and normal subjects." Metabolism, 30, p. 293-8
  58. Ferrari C, Fressati S, Romussi M, et al. (1977) "Effects of short-term clofibrate administration on glucose tolerance and insulin secretion in patients with chemical diabetes or hypertriglyceridemia." Metabolism, 26, p. 129-39
  59. Storlien LH, Thorburn AW, Smythe GA, Jenkins AB, Chisholm DJ, Kraegen EW (1989) "Effect of d-fenfluramine on basal glucose turnover and fat-feeding-induced insulin resistance in rats." Diabetes, 38, p. 499-503
  60. Pestell RG, Crock PA, Ward GM, Alford FP, Best JD (1989) "Fenfluramine increases insulin action in patients with NIDDM." Diabetes Care, 12, p. 252-8
  61. Harrison LC, King-Roach A, Martin FI, Melick RA (1975) "The effect of fenfluramine on insulin binding and on basal and insulin-stimulated oxidation of 1-C-glucose by human adipose tissue." Postgrad Med J, 51 Suppl 1, p. 110-4
  62. Feldman JM, Chapman B (1975) "Monoamine oxidase inhibitors: nature of their interaction with rabbit pancreatic islets to alter insulin secretion." Diabetologia, 11, p. 487-94
  63. Aleyassine H, Gardiner RJ (1975) "Dual action of antidepressant drugs (MAO inhibitors) on insulin release." Endocrinology, 96, p. 702-10
  64. Aleyassine H, Lee SH (1972) "Inhibition of insulin release by substrates and inhibitors of monoamine oxidase." Am J Physiol, 222, p. 565-9
  65. Cooper AJ, Ashcroft G (1966) "Potentiation of insulin hypoglycaemia by M.A.O.I. antidepressant drugs." Lancet, 1, p. 407-9
  66. Lozada A, Dujovne CA (1994) "Drug interactions with fibric acids." Pharmacol Ther, 63, p. 163-76
  67. Kradjan WA, Witt DM, Opheim KE, Wood FC (1994) "Lack of interaction between glipizide and co-trimoxazole." J Clin Pharmacol, 34, p. 997-1002
  68. Herings RMC, Deboer A, Stricker BHC, Leufkens HGM, Porsius A (1995) "Hypoglycaemia associated with use of inhibitors of angiotensin converting enzyme." Lancet, 345, p. 1195-8
  69. Ahmad S (1995) "Drug interaction induces hypoglycemia." J Fam Pract, 40, p. 540-1
  70. Feher MD, Amiel S (1995) "ACE inhibitors and hypoglycaemia." Lancet, 346, p. 125-6
  71. Paolisso G, Balbi V, Gambardella A, Varricchio G, Tortoriello R, Saccomanno F, Amato L, Varricchio M (1995) "Lisinopril administration improves insulin action in aged patients with hypertension." J Hum Hypertens, 9, p. 541-6
  72. Darcy PF, Griffin JP (1995) "Interactions with drugs used in the treatment of depressive illness." Adverse Drug React Toxicol Rev, 14, p. 211-31
  73. Kubacka RT, Antla EJ, Juhl RP, Welshman IR (1996) "Effects of aspirin and ibuprofen on the pharmacokinetics and pharmacodynamics of glyburide in healthy subjects." Ann Pharmacother, 30, p. 20-6
  74. (2001) "Product Information. Amaryl (glimepiride)." Hoechst Marion Roussel
  75. Deeg MA, Lipkin EW (1996) "Hypoglycemia associated with the use of fluoxetine." West J Med, 164, p. 262-3
  76. Hartmann D, Korn A, Komjati M, Heinz G, Haefelfinger P, Defoin R, Waldhausl WK (1990) "Lack of effect of tenoxicam on dynamic responses to concurrent oral doses of glucose and glibenclamide." Br J Clin Pharmacol, 30, p. 245-52
  77. Hellman B (1974) "Potentiating effects of drugs on the binding of glibenclamide to pancreatic beta cells." Metabolism, 23, p. 839-46
  78. Morrison PJ, Rogers HJ, Spector RG, Bradbrook ID, John VA (1982) "Effect of pirprofen on glibenclamide kinetics and response." Br J Clin Pharmacol, 14, p. 123-6
  79. Hekimsoy Z, Biberoglu S, Comlekci A, Tarhan O, Mermut C, Biberoglu K (1997) "Trimethoprim/sulfamethoxazole-induced hypoglycemia in a malnourished patient with severe infection." Eur J Endocrinol, 136, p. 3046
  80. (2001) "Product Information. Prandin (repaglinide)." Novo Nordisk Pharmaceuticals Inc
  81. Iida H, Morita T, Suzuki E, Iwasawa K, Toyooka T, Nakajima T (1999) "Hypoglycemia induced by interaction between clarithromycin and disopyramide." Jpn Heart J, 40, p. 91-6
  82. Morris AD, Newton RW, Boyle DI, et al. (1997) "ACE inhibitor use is associated with hospitalization for severe hypoglycemia in patients with diabetes." Diabetes Care, 20, p. 1363-7
  83. (2001) "Product Information. Tolinase (tolazamide)." Pharmacia and Upjohn
  84. (2001) "Product Information. Orinase (tolbutamide)." Pharmacia and Upjohn
  85. (2001) "Product Information. Dymelor (acetohexamide)." Lilly, Eli and Company
  86. (2001) "Product Information. Starlix (nateglinide)." Novartis Pharmaceuticals
  87. Niemi M, Backman JT, Neuvonen M, Laitila J, Neuvonen PJ, Kivisto KT (2001) "Effects of fluconazole and fluvoxamine on the pharmacokinetics and pharmacodynamics of glimepiride." Clin Pharmacol Ther, 69, p. 194-200
  88. Abad S, Moachon L, Blanche P, Bavoux F, Sicard D, Salmon-Ceron D (2001) "Possible interaction between glicazide, fluconazole and sulfamethoxazole resulting in severe hypoglycaemia." Br J Clin Pharmacol, 52, p. 456-7
  89. Pollak PT, Mukherjee SD, Fraser AD (2001) "Sertraline-induced hypoglycemia." Ann Pharmacother, 35, p. 1371-4
  90. Tran PO, Gleason CE, Robertson RP (2002) "Inhibition of interleukin-1beta-induced COX-2 and EP3 gene expression by sodium salicylate enhances pancreatic islet beta-cell function." Diabetes, 51, p. 1772-8
  91. Hundal RS, Petersen KF, Mayerson AB, et al. (2002) "Mechanism by which high-dose aspirin improves glucose metabolism in type 2 diabetes." J Clin Invest, 109, p. 1321-6
  92. Tremaine LM, Wilner KD, Preskorn SH (1997) "A study of the potential effect of sertraline on the pharmacokinetics and protein binding of tolbutamide." Clin Pharmacokinet, 32(Suppl 1), p. 31-36
  93. (2004) "Product Information. Apidra (insulin glulisine)." Aventis Pharmaceuticals
  94. Fogari R, Zoppi A, Corradi L, Pierangelo L, Mugellini A, Lusardi P (1998) "Comparative effects of lisinopril and losartan on insulin sensitivity in the treatment of non diabetic hypertension." Br J Clin Pharmacol, 46, p. 467-71
  95. Sone H, Takahashi A, Yamada N (2001) "Ibuprofen-related hypoglycemia in a patient receiving sulfonylurea." Ann Intern Med, 134, p. 344
  96. Sawka AM, Burgart V, Zimmerman D (2001) "Loss of awareness of hypoglycemia temporally associated with selective serotonin reuptake inhibitors." Diabetes Care, 24, p. 1845-6
  97. (2005) "Product Information. Increlex (mecasermin)." Tercica Inc
  98. Vuksan V, Sievenpiper JL, Koo VY, et al. (2000) "American ginseng (Panax quinquefolius L) reduces postprandial glycemia in nondiabetic subjects and subjects with type 2 diabetes mellitus." Arch Intern Med, 160, p. 1009-13
  99. Vuksan V, Stavro MP, Sievenpiper JL, et al. (2000) "Similar postprandial glycemic reductions with escalation of dose and administration time of American ginseng in type 2 diabetes." Diabetes Care, 23, p. 1221-6
  100. Sievenpiper JL, Arnason JT, Leiter LA, Vuksan V (2003) "Variable effects of American ginseng: a batch of American ginseng (Panax quinquefolius L.) with a depressed ginsenoside profile does not affect postprandial glycemia." Eur J Clin Nutr, 57, p. 243-8
  101. World Health Organization (2020) WHO Public Assessment Reports (WHOPARs) https://extranet.who.int/pqweb/medicines/prequalification-reports/whopars
  102. (2019) "Product Information. Apo-Gliclazide MR (gliclazide)." Apotex Incorporated
View all 102 references

Switch to consumer interaction data

Minor

aspirin caffeine

Applies to: Uricalm Intensive (acetaminophen / aspirin / caffeine) and Uricalm Intensive (acetaminophen / aspirin / caffeine)

One study has reported that coadministration of caffeine and aspirin lead to a 25% increase in the rate of appearance and 17% increase in maximum concentration of salicylate in the plasma. A significantly higher area under the plasma concentration time curve of salicylate was also reported when both drugs were administered together. The exact mechanism of this interaction has not been specified. Physicians and patients should be aware that coadministration of aspirin and caffeine may lead to higher salicylate levels faster.

References

  1. Yoovathaworn KC, Sriwatanakul K, Thithapandha A (1986) "Influence of caffeine on aspirin pharmacokinetics." Eur J Drug Metab Pharmacokinet, 11, p. 71-6

Switch to consumer interaction data

Drug and food interactions

Major

acetaminophen food

Applies to: Uricalm Intensive (acetaminophen / aspirin / caffeine)

GENERALLY AVOID: Chronic, excessive consumption of alcohol may increase the risk of acetaminophen-induced hepatotoxicity, which has included rare cases of fatal hepatitis and frank hepatic failure requiring liver transplantation. The proposed mechanism is induction of hepatic microsomal enzymes during chronic alcohol use, which may result in accelerated metabolism of acetaminophen and increased production of potentially hepatotoxic metabolites.

MANAGEMENT: In general, chronic alcoholics should avoid regular or excessive use of acetaminophen. Alternative analgesic/antipyretic therapy may be appropriate in patients who consume three or more alcoholic drinks per day. However, if acetaminophen is used, these patients should be cautioned not to exceed the recommended dosage (maximum 4 g/day in adults and children 12 years of age or older).

References

  1. Kaysen GA, Pond SM, Roper MH, Menke DJ, Marrama MA (1985) "Combined hepatic and renal injury in alcoholics during therapeutic use of acetaminophen." Arch Intern Med, 145, p. 2019-23
  2. O'Dell JR, Zetterman RK, Burnett DA (1986) "Centrilobular hepatic fibrosis following acetaminophen-induced hepatic necrosis in an alcoholic." JAMA, 255, p. 2636-7
  3. Seeff LB, Cuccherini BA, Zimmerman HJ, Adler E, Benjamin SB (1986) "Acetaminophen hepatotoxicity in alcoholics." Ann Intern Med, 104, p. 399-404
  4. Thummel KE, Slattery JT, Nelson SD (1988) "Mechanism by which ethanol diminishes the hepatotoxicity of acetaminophen." J Pharmacol Exp Ther, 245, p. 129-36
  5. McClain CJ, Kromhout JP, Peterson FJ, Holtzman JL (1980) "Potentiation of acetaminophen hepatotoxicity by alcohol." JAMA, 244, p. 251-3
  6. Kartsonis A, Reddy KR, Schiff ER (1986) "Alcohol, acetaminophen, and hepatic necrosis." Ann Intern Med, 105, p. 138-9
  7. Prescott LF, Critchley JA (1983) "Drug interactions affecting analgesic toxicity." Am J Med, 75, p. 113-6
  8. (2002) "Product Information. Tylenol (acetaminophen)." McNeil Pharmaceutical
  9. Whitcomb DC, Block GD (1994) "Association of acetaminopphen hepatotoxicity with fasting and ethanol use." JAMA, 272, p. 1845-50
  10. Bonkovsky HL (1995) "Acetaminophen hepatotoxicity, fasting, and ethanol." JAMA, 274, p. 301
  11. Nelson EB, Temple AR (1995) "Acetaminophen hepatotoxicity, fasting, and ethanol." JAMA, 274, p. 301
  12. Zimmerman HJ, Maddrey WC (1995) "Acetaminophen (paracetamol) hepatotoxicity with regular intake of alcohol: analysis of instances of therapeutic misadventure." Hepatology, 22, p. 767-73
View all 12 references

Switch to consumer interaction data

Moderate

repaglinide food

Applies to: repaglinide

MONITOR: Grapefruit juice may increase the plasma concentrations of orally administered drugs that are substrates of the CYP450 3A4 isoenzyme. The proposed mechanism is inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall by certain compounds present in grapefruit. Because grapefruit juice inhibits primarily intestinal rather than hepatic CYP450 3A4, the magnitude of interaction is greatest for those drugs that undergo significant presystemic metabolism by CYP450 3A4 (i.e., drugs with low oral bioavailability). In general, the effect of grapefruit juice is concentration-, dose- and preparation-dependent, and can vary widely among brands. Certain preparations of grapefruit juice (e.g., high dose, double strength) have sometimes demonstrated potent inhibition of CYP450 3A4, while other preparations (e.g., low dose, single strength) have typically demonstrated moderate inhibition. Pharmacokinetic interactions involving grapefruit juice are also subject to a high degree of interpatient variability, thus the extent to which a given patient may be affected is difficult to predict.

MANAGEMENT: Patients who regularly consume grapefruit or grapefruit juice should be monitored for adverse effects and altered plasma concentrations of drugs that undergo significant presystemic metabolism by CYP450 3A4. Grapefruit and grapefruit juice should be avoided if an interaction is suspected. Orange juice is not expected to interact with these drugs.

References

  1. Edgar B, Bailey D, Bergstrand R, et al. (1992) "Acute effects of drinking grapefruit juice on the pharmacokinetics and dynamics on felodipine and its potential clinical relevance." Eur J Clin Pharmacol, 42, p. 313-7
  2. Jonkman JH, Sollie FA, Sauter R, Steinijans VW (1991) "The influence of caffeine on the steady-state pharmacokinetics of theophylline." Clin Pharmacol Ther, 49, p. 248-55
  3. Bailey DG, Arnold JM, Munoz C, Spence JD (1993) "Grapefruit juice--felodipine interaction: mechanism, predictability, and effect of naringin." Clin Pharmacol Ther, 53, p. 637-42
  4. Bailey DG, Arnold JMO, Spence JD (1994) "Grapefruit juice and drugs - how significant is the interaction." Clin Pharmacokinet, 26, p. 91-8
  5. Sigusch H, Hippius M, Henschel L, Kaufmann K, Hoffmann A (1994) "Influence of grapefruit juice on the pharmacokinetics of a slow release nifedipine formulation." Pharmazie, 49, p. 522-4
  6. Bailey DG, Arnold JM, Strong HA, Munoz C, Spence JD (1993) "Effect of grapefruit juice and naringin on nisoldipine pharmacokinetics." Clin Pharmacol Ther, 54, p. 589-94
  7. Yamreudeewong W, Henann NE, Fazio A, Lower DL, Cassidy TG (1995) "Drug-food interactions in clinical practice." J Fam Pract, 40, p. 376-84
  8. (1995) "Grapefruit juice interactions with drugs." Med Lett Drugs Ther, 37, p. 73-4
  9. Hukkinen SK, Varhe A, Olkkola KT, Neuvonen PJ (1995) "Plasma concentrations of triazolam are increased by concomitant ingestion of grapefruit juice." Clin Pharmacol Ther, 58, p. 127-31
  10. Min DI, Ku YM, Geraets DR, Lee HC (1996) "Effect of grapefruit juice on the pharmacokinetics and pharmacodynamics of quinidine in healthy volunteers." J Clin Pharmacol, 36, p. 469-76
  11. Majeed A, Kareem A (1996) "Effect of grapefruit juice on cyclosporine pharmacokinetics." Pediatr Nephrol, 10, p. 395
  12. Clifford CP, Adams DA, Murray S, Taylor GW, Wilkins MR, Boobis AR, Davies DS (1996) "Pharmacokinetic and cardiac effects of terfenadine after inhibition of its metabolism by grapefruit juice." Br J Clin Pharmacol, 42, p662
  13. Josefsson M, Zackrisson AL, Ahlner J (1996) "Effect of grapefruit juice on the pharmacokinetics of amlodipine in healthy volunteers." Eur J Clin Pharmacol, 51, p. 189-93
  14. Kantola T, Kivisto KT, Neuvonen PJ (1998) "Grapefruit juice greatly increases serum concentrations of lovastatin and lovastatin acid." Clin Pharmacol Ther, 63, p. 397-402
  15. Ozdemir M, Aktan Y, Boydag BS, Cingi MI, Musmul A (1998) "Interaction between grapefruit juice and diazepam in humans." Eur J Drug Metab Pharmacokinet, 23, p. 55-9
  16. Bailey DG, Malcolm J, Arnold O, Spence JD (1998) "Grapefruit juice-drug interactions." Br J Clin Pharmacol, 46, p. 101-10
  17. Bailey DG, Kreeft JH, Munoz C, Freeman DJ, Bend JR (1998) "Grapefruit juice felodipine interaction: Effect of naringin and 6',7'-dihydroxybergamottin in humans." Clin Pharmacol Ther, 64, p. 248-56
  18. Garg SK, Kumar N, Bhargava VK, Prabhakar SK (1998) "Effect of grapefruit juice on carbamazepine bioavailability in patients with epilepsy." Clin Pharmacol Ther, 64, p. 286-8
  19. Lilja JJ, Kivisto KT, Neuvonen PJ (1998) "Grapefruit juice-simvastatin interaction: Effect on serum concentrations of simvastatin, simvastatin acid, and HMG-CoA reductase inhibitors." Clin Pharmacol Ther, 64, p. 477-83
  20. Fuhr U, Maier-Bruggemann A, Blume H, et al. (1998) "Grapefruit juice increases oral nimodipine bioavailability." Int J Clin Pharmacol Ther, 36, p. 126-32
  21. Lilja JJ, Kivisto KT, Neuvonen PJ (1999) "Grapefruit juice increases serum concentrations of atorvastatin and has no effect on pravastatin." Clin Pharmacol Ther, 66, p. 118-27
  22. Eagling VA, Profit L, Back DJ (1999) "Inhibition of the CYP3A4-mediated metabolism and P-glycoprotein-mediated transport of the HIV-I protease inhibitor saquinavir by grapefruit juice components." Br J Clin Pharmacol, 48, p. 543-52
  23. Damkier P, Hansen LL, Brosen K (1999) "Effect of diclofenac, disulfiram, itraconazole, grapefruit juice and erythromycin on the pharmacokinetics of quinidine." Br J Clin Pharmacol, 48, p. 829-38
  24. Lee AJ, Chan WK, Harralson AF, Buffum J, Bui BCC (1999) "The effects of grapefruit juice on sertraline metabolism: An in vitro and in vivo study." Clin Ther, 21, p. 1890-9
  25. Dresser GK, Spence JD, Bailey DG (2000) "Pharmacokinetic-pharmacodynamic consequences and clinical relevance of cytochrome P450 3A4 inhibition." Clin Pharmacokinet, 38, p. 41-57
  26. Gunston GD, Mehta U (2000) "Potentially serious drug interactions with grapefruit juice." S Afr Med J, 90, p. 41
  27. Takanaga H, Ohnishi A, Maatsuo H, et al. (2000) "Pharmacokinetic analysis of felodipine-grapefruit juice interaction based on an irreversible enzyme inhibition model." Br J Clin Pharmacol, 49, p. 49-58
  28. Libersa CC, Brique SA, Motte KB, et al. (2000) "Dramatic inhibition of amiodarone metabolism induced by grapefruit juice." Br J Clin Pharmacol, 49, p. 373-8
  29. Bailey DG, Dresser GR, Kreeft JH, Munoz C, Freeman DJ, Bend JR (2000) "Grapefruit-felodipine interaction: Effect of unprocessed fruit and probable active ingredients." Clin Pharmacol Ther, 68, p. 468-77
  30. Zaidenstein R, Soback S, Gips M, Avni B, Dishi V, Weissgarten Y, Golik A, Scapa E (2001) "Effect of grapefruit juice on the pharmacokinetics of losartan and its active metabolite E3174 in healthy volunteers." Ther Drug Monit, 23, p. 369-73
  31. Sato J, Nakata H, Owada E, Kikuta T, Umetsu M, Ito K (1993) "Influence of usual intake of dietary caffeine on single-dose kinetics of theophylline in healthy human subjects." Eur J Clin Pharmacol, 44, p. 295-8
  32. Flanagan D (2005) "Understanding the grapefruit-drug interaction." Gen Dent, 53, 282-5; quiz 286
View all 32 references

Switch to consumer interaction data

Moderate

aspirin food

Applies to: Uricalm Intensive (acetaminophen / aspirin / caffeine)

GENERALLY AVOID: The concurrent use of aspirin or nonsteroidal anti-inflammatory drugs (NSAIDs) and ethanol may lead to gastrointestinal (GI) blood loss. The mechanism may be due to a combined local effect as well as inhibition of prostaglandins leading to decreased integrity of the GI lining.

MANAGEMENT: Patients should be counseled on this potential interaction and advised to refrain from alcohol consumption while taking aspirin or NSAIDs.

References

  1. (2002) "Product Information. Motrin (ibuprofen)." Pharmacia and Upjohn

Switch to consumer interaction data

Minor

caffeine food

Applies to: Uricalm Intensive (acetaminophen / aspirin / caffeine)

The effect of grapefruit juice on the pharmacologic activity of caffeine is controversial. One report suggests that grapefruit juice increases the effect of caffeine. The proposed mechanism is inhibition of cytochrome P-450 metabolism of caffeine. However, a well-conducted pharmacokinetic/pharmacodynamic study did not demonstrate this effect. The clinical significance of this potential interaction is unknown.

References

  1. (1995) "Grapefruit juice interactions with drugs." Med Lett Drugs Ther, 37, p. 73-4
  2. Maish WA, Hampton EM, Whitsett TL, Shepard JD, Lovallo WR (1996) "Influence of grapefruit juice on caffeine pharmacokinetics and pharmacodynamics." Pharmacotherapy, 16, p. 1046-52

Switch to consumer interaction data

Minor

aspirin food

Applies to: Uricalm Intensive (acetaminophen / aspirin / caffeine)

One study has reported that coadministration of caffeine and aspirin lead to a 25% increase in the rate of appearance and 17% increase in maximum concentration of salicylate in the plasma. A significantly higher area under the plasma concentration time curve of salicylate was also reported when both drugs were administered together. The exact mechanism of this interaction has not been specified. Physicians and patients should be aware that coadministration of aspirin and caffeine may lead to higher salicylate levels faster.

References

  1. Yoovathaworn KC, Sriwatanakul K, Thithapandha A (1986) "Influence of caffeine on aspirin pharmacokinetics." Eur J Drug Metab Pharmacokinet, 11, p. 71-6

Switch to consumer interaction data

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Loading...
QR code containing a link to this page

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.