Skip to main content

Drug Interactions between Qualaquin and revumenib

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Major

quiNINE revumenib

Applies to: Qualaquin (quinine) and revumenib

GENERALLY AVOID: Revumenib causes dose-related prolongation of the QT interval. Coadministration with other agents that can prolong the QT interval may result in additive effects and an increased risk of ventricular arrhythmias including torsade de pointes and sudden death. In clinical trials, QT interval prolongation was reported as an adverse reaction in 29% of patients treated with revumenib at the recommended dosage for relapsed or refractory acute leukemia with a KMT2A translocation. Additionally, Grade 3 QT interval prolongation occurred in 12% of those patients and a greater than 60 msec increase in Fridericia-corrected QT interval (QTcF) from baseline was reported in 18% of patients. In general, the risk of an individual agent or a combination of agents causing ventricular arrhythmia in association with QT prolongation is largely unpredictable but may be increased by certain underlying risk factors such as congenital long QT syndrome, cardiac disease, and electrolyte disturbances (e.g., hypokalemia, hypomagnesemia, hypocalcemia). Moreover, the extent of drug-induced QT prolongation is dependent on the particular drug(s) involved and dosage(s) of the drug(s).

MANAGEMENT: It is recommended to avoid revumenib in combination with other drugs that can prolong the QT interval. If concomitant use cannot be avoided, obtain electrocardiograms (ECGs) when initiating, during concomitant use, and as clinically indicated. Serum electrolytes, including potassium, magnesium, and calcium, should be monitored before starting revumenib therapy and monthly during treatment. Revumenib should not be started if baseline QTc is greater than 450 msec. Likewise, treatment should be interrupted and adjusted in accordance with the product labeling in patients who develop QTc prolongation greater than 480 msec. Patients should be advised to seek prompt medical attention if they experience symptoms that could indicate the occurrence of torsade de pointes such as dizziness, lightheadedness, fainting, palpitation, irregular heart rhythm, shortness of breath, or syncope. Permanently discontinue revumenib in patients who develop QTc interval prolongation with life-threatening arrhythmia.

References (1)
  1. (2024) "Product Information. Revuforj (revumenib)." Syndax Pharmaceuticals, Inc

Drug and food interactions

Moderate

revumenib food

Applies to: revumenib

ADJUST DOSING INTERVAL: In pharmacokinetic studies, revumenib was administered while fasting or with a low fat meal. Revumenib has not been studied with meals of higher fat content and the impact on its pharmacokinetic parameters is unknown.

MONITOR: Grapefruit, grapefruit juice, grapefruit hybrids, pomelos, star-fruit, and Seville oranges may increase the plasma concentrations of revumenib. The proposed mechanism is inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall by certain compounds present in grapefruits. The extent and clinical significance are unknown. In pharmacokinetic studies in patients with relapsed or refractory acute leukemia, revumenib area under the concentration-time curve (AUC) and peak plasma concentration (Cmax) increased 2-fold following concomitant use with the potent CYP450 3A4 inhibitors posaconazole, itraconazole, and voriconazole, and 2.5-fold following concomitant use with the potent CYP450 3A4 inhibitor cobicistat. However, clinically significant differences in revumenib pharmacokinetics were not observed when used concomitantly with the moderate CYP450 3A4 inhibitors fluconazole and isavuconazole. In general the effect of grapefruit juice is concentration-, dose- and preparation-dependent, and can vary widely among brands. Certain preparations of grapefruit juice (e.g., high dose, double strength) have sometimes demonstrated potent inhibition of CYP450 3A4, while other preparations (e.g., low dose, single strength) have typically demonstrated moderate inhibition. Moreover, pharmacokinetic alterations associated with interactions involving grapefruit juice are often subject to a high degree of interpatient variability. Increased exposure to revumenib may increase the risk of QT interval prolongation, which has been associated with ventricular arrhythmias including torsade de pointes and sudden death.

MANAGEMENT: Due to the potential impact of high fat content meals on revumenib absorption and exposure, it is recommended that revumenib be administered while fasting or with a low fat meal (approximately 400-500 calories, with 25% of calories from fat). In addition, if grapefruit, grapefruit juice, grapefruit hybrids, pomelos, star-fruit, or Seville oranges are consumed during treatment with revumenib, assess patient tolerability and monitor for serious adverse effects (e.g., QT prolongation and torsade de pointes arrhythmia, differentiation syndrome, neutropenia, thrombocytopenia).

References (2)
  1. (2024) "Product Information. Quinoric (hydroxychloroquine)." Bristol Laboratories Ltd
  2. (2024) "Product Information. Revuforj (revumenib)." Syndax Pharmaceuticals, Inc
Minor

quiNINE food

Applies to: Qualaquin (quinine)

Coadministration with grapefruit juice does not appear to affect the pharmacokinetics of quinine in a clinically relevant manner. Although grapefruit juice is an inhibitor of CYP450 3A4 and quinine is metabolized by this pathway to its major metabolite, 3-hydroxyquinine, a study of ten healthy volunteers found no significant differences in quinine peak plasma concentration (Cmax), time to reach Cmax (Tmax), terminal elimination half-life, systemic exposure (AUC), or apparent oral clearance (Cl/F) when a single 600 mg oral dose of quinine sulfate was administered in combination with 200 mL of orange juice (control), half-strength grapefruit juice, and full-strength grapefruit juice twice daily for 6 days each, separated by a 2-week washout period. Relative to the control period, the apparent renal clearance of quinine was markedly increased by 81% during treatment with half-strength grapefruit juice. However, since renal clearance accounts for approximately 6% of the total clearance of quinine, this change would likely have minimal clinical impact. The lack of a significant interaction is probably due to the fact that grapefruit juice primarily inhibits intestinal rather than hepatic CYP450 3A4, and quinine is not known to undergo significant presystemic metabolism as evidenced by its relatively high oral bioavailability (76% to 88%). Nevertheless, excessive consumption of grapefruit juice and tonic water (which contains quinine) was suspected as the cause of torsade de pointes arrhythmia in a patient with a history of asymptomatic long QT syndrome. Treatment with magnesium sulfate and metoprolol had no effect, but the arrhythmia resolved spontaneously 48 hours after discontinuation of the drinks. Based on current data, moderate grapefruit juice consumption is probably safe for the majority of patients taking quinine.

References (5)
  1. Ho PC, Chalcroft SC, Coville PF, Wanwimolruk S (1999) "Grapefruit juice has no effect on quinine pharmacokinetics." Eur J Clin Pharmacol, 55, p. 393-8
  2. Hermans K, Stockman D, Van den Branden F (2003) "Grapefruit and tonic: a deadly combination in a patient with the long QT syndrome." Am J Med, 114, p. 511-2
  3. (2006) "Product Information. Qualaquin (quinine)." AR Scientific Inc
  4. Zhang H, Coville PF, Walker RJ, Miners JO, Birkett DJ, Wanwimolruk S (1997) "Evidence for involvement of human CYP3A in the 3-hydroxylation of quinine." Br J Clin Pharmacol, 43, p. 245-52
  5. Mirghani RA, Yasar U, Zheng T, et al. (2002) "Enzyme kinetics for the formation of 3-hydroxyquinine and three new metabolites of quinine in vitro; 3-hydroxylation by CYP3A4 is indeed the major metabolic pathway." Drug Metab Dispos, 30, p. 1368-71

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.