Skip to main content

Drug Interactions between Quadrinal and tamoxifen

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Major

PHENobarbital tamoxifen

Applies to: Quadrinal (ephedrine / phenobarbital / potassium iodide / theophylline) and tamoxifen

GENERALLY AVOID: Coadministration with potent inducers of CYP450 3A4 may significantly decrease the plasma concentrations of tamoxifen and its active metabolites. According to the product labeling, tamoxifen is primarily metabolized by CYP450 3A4 to N-desmethyltamoxifen, an antiestrogenic metabolite with similar biological activity to tamoxifen but an elimination half-life that is estimated to be approximately 10 to 14 days versus 5 to 7 days for tamoxifen. N-desmethyltamoxifen itself is further metabolized by CYP450 2D6 and possibly other CYP450 enzymes to endoxifen, a major metabolite that is thought to be primarily responsible for tamoxifen's therapeutic effect. When a single 80 mg oral dose of tamoxifen was administered to 10 healthy volunteers following pretreatment with the potent CYP450 3A4 inducer rifampin at a dosage of 600 mg once daily for 5 days, tamoxifen peak plasma concentration (Cmax), systemic exposure (AUC) and elimination half-life decreased by 55%, 86% and 44%, respectively, compared to pretreatment with placebo. In addition, rifampin decreased the AUC and half-life of N-desmethyltamoxifen by 62% and 36%, respectively, and increased the Cmax by approximately 50% compared to placebo. These results indicate that rifampin enhanced the metabolism of tamoxifen during both the presystemic and elimination phases. Similar changes in the AUCs of tamoxifen (81% to 86% reductions) and N-desmethyltamoxifen (62% to 74% reductions) were observed in an interim safety analysis of four breast cancer patients receiving tamoxifen 20 mg or 40 mg once daily who participated in a pharmacokinetic study on the induction effects of rifampin 600 mg given daily for 15 days. In these four patients, the AUCs of endoxifen were also significantly reduced by 28% to 85% following coadministration with rifampin, which led to cessation of further patient enrollment into the trial. In another study, patients with glioma who received high-dose tamoxifen with phenytoin (n=15) demonstrated a 60% lower mean plasma tamoxifen concentration than patients not on concomitant phenytoin (n=10), although the difference did not reach statistical significance due to high interpatient variability and low patient numbers. The interaction has also been described in case reports of two tamoxifen-treated patients who had significantly reduced and subtherapeutic endoxifen levels during or after coadministration with a potent CYP450 inducer. One of them was receiving phenytoin and the other, rifampin. Induction of endoxifen clearance via P-glycoprotein-mediated efflux and/or uridine diphosphate glucuronosyltransferase (UGT)-mediated metabolism may be involved. The extent to which other potent CYP450 3A4 inducers may affect tamoxifen and its active metabolites is unknown.

MANAGEMENT: Until more information is available, concomitant use of tamoxifen with potent CYP450 3A4 inducers should be avoided when possible, particularly if they are to be administered for a prolonged period. Otherwise, therapeutic drug monitoring of tamoxifen and endoxifen is recommended to optimize therapy.

References (10)
  1. Kivisto KT, Villikka K, Nyman L, Anttila M, Neuvonen PJ (1998) "Tamoxifen and toremifene concentrations in plasma are greatly decreased by rifampin." Clin Pharmacol Ther, 64, p. 648-54
  2. Crewe HK, Ellis SW, Lennard MS, Tucker GT (1997) "Variable contribution of cytochromes P450 2D6, 2C9, and 3A4 to the 4-hydroxylation of tamoxifen by human liver microsomes." Biochem Pharmacol, 53, p. 171-8
  3. Binkhorst, L, Van Gelder, T, Loos W.J, et al. (2012) "Effects of CYP induction by rifampicin on tamoxifen exposure." Clin Pharmacol and Therapeutic, 92, p. 62-7
  4. Ducharme J, Fried K, Shenouda G, Leyland-Jones B, Wainer IW (1997) "Tamoxifen metabolic patterns within a glioma patient population treated with high-dose tamoxifen." Br J Clin Pharmacol, 43, p. 189-93
  5. henderson sl, Teft WA, Kim RB (2016) "Profound reduction in tamoxifen active metabolite endoxifen in a breast cancer patient treated with rifampin prior to initiation of an anti-TNF-alpha biologic for ulcerative colitis: a case report." BMC Cancer, 16, p. 304
  6. (2024) "Product Information. Tamoxifen Citrate (tamoxifen)." Dr. Reddy's Laboratories Inc
  7. (2022) "Product Information. Teva-Tamoxifen (tamoxifen)." Teva Canada Limited
  8. (2024) "Product Information. Nolvadex (tamoxifen)." AstraZeneca Pty Ltd
  9. (2024) "Product Information. Tamoxifen (tamoxifen)." MYLAN
  10. Gryn SE, Teft WA, Kim RB (2014) "Profound reduction in the tamoxifen active metabolite endoxifen in a patient on phenytoin for epilepsy compared with a CYP2D6 genotype matched cohort." Pharmacogenet Genomics, 24, p. 367-9
Moderate

theophylline PHENobarbital

Applies to: Quadrinal (ephedrine / phenobarbital / potassium iodide / theophylline) and Quadrinal (ephedrine / phenobarbital / potassium iodide / theophylline)

MONITOR: Barbiturates may decrease serum levels and therapeutic effects of the methylxanthines. The mechanism is barbiturate induction of CYP450 3A4 and 1A2 hepatic metabolism of methylxanthines.

MANAGEMENT: Close observation for clinical and laboratory evidence of decreased methylxanthine effect is indicated if these drugs must be used together. Patients should be advised to notify their physician if they experience a worsening of their respiratory symptoms.

References (4)
  1. Upton RA (1991) "Pharmacokinetic interactions between theophylline and other medication (Part I)." Clin Pharmacokinet, 20, p. 66-80
  2. Bukowskyj M, Nakatsu K, Munt PW (1984) "Theophylline reassessed." Ann Intern Med, 101, p. 63-73
  3. Landay RA, Gonzalez MA, Taylor JC (1978) "Effect of phenobarbital on theophylline disposition." J Allergy Clin Immunol, 62, p. 27-9
  4. Dahlqvist R, Steiner E, Koike Y, von Bahr C, Lind M, Billing B (1989) "Induction of theophylline metabolism by pentobarbital." Ther Drug Monit, 11, p. 408-10
Minor

theophylline ePHEDrine

Applies to: Quadrinal (ephedrine / phenobarbital / potassium iodide / theophylline) and Quadrinal (ephedrine / phenobarbital / potassium iodide / theophylline)

Ephedrine-methylxanthine combinations are used for the treatment of asthma but the efficacy of the combination has been questioned. This combination may lead to increased xanthine side effects. The mechanism is unknown, but may be related to synergistic pharmacologic effects. Patients using this combination should be closely monitored for side effects such as nausea, vomiting, tachycardia, nervousness, or insomnia. If side effects are noted, the dosage of the xanthine may need to be decreased.

References (5)
  1. Weinberger M, Bronsky E, Bensch GW, Bock GN, Yecies JJ (1975) "Interaction of ephedrine and theophylline." Clin Pharmacol Ther, 17, p. 585-92
  2. Sims JA, doPico GA, Reed CE (1978) "Bronchodilating effect of oral theophylline-ephedrine combination." J Allergy Clin Immunol, 62, p. 15-21
  3. Tinkelman DG, Avner SE (1977) "Ephedrine therapy in asthmatic children. Clinical tolerance and absence of side effects." JAMA, 237, p. 553-7
  4. Weinberger MM, Brousky EA (1974) "Evaluation of oral bronchodilator therapy in asthmatic children: bronchodilators in asthmatic children." J Pediatr, 84, p. 421-7
  5. Badiei B, Faciane J, Sly M (1975) "Effect of throphylline, ephedrine and theri combination upon exercise-induced airway obstruction." Ann Allergy, 35, p. 32-6

Drug and food interactions

Major

PHENobarbital food

Applies to: Quadrinal (ephedrine / phenobarbital / potassium iodide / theophylline)

GENERALLY AVOID: Concurrent acute use of barbiturates and ethanol may result in additive CNS effects, including impaired coordination, sedation, and death. Tolerance of these agents may occur with chronic use. The mechanism is related to inhibition of microsomal enzymes acutely and induction of hepatic microsomal enzymes chronically.

MANAGEMENT: The combination of ethanol and barbiturates should be avoided.

References (5)
  1. Gupta RC, Kofoed J (1966) "Toxological statistics for barbiturates, other sedatives, and tranquilizers in Ontario: a 10-year survey." Can Med Assoc J, 94, p. 863-5
  2. Misra PS, Lefevre A, Ishii H, Rubin E, Lieber CS (1971) "Increase of ethanol, meprobamate and pentobarbital metabolism after chronic ethanol administration in man and in rats." Am J Med, 51, p. 346-51
  3. Saario I, Linnoila M (1976) "Effect of subacute treatment with hypnotics, alone or in combination with alcohol, on psychomotor skills related to driving." Acta Pharmacol Toxicol (Copenh), 38, p. 382-92
  4. Stead AH, Moffat AC (1983) "Quantification of the interaction between barbiturates and alcohol and interpretation of fatal blood concentrations." Hum Toxicol, 2, p. 5-14
  5. Seixas FA (1979) "Drug/alcohol interactions: avert potential dangers." Geriatrics, 34, p. 89-102
Moderate

theophylline food

Applies to: Quadrinal (ephedrine / phenobarbital / potassium iodide / theophylline)

GENERALLY AVOID: Coadministration with caffeine may increase the serum concentrations of theophylline. The proposed mechanism involves competitive inhibition of theophylline metabolism via CYP450 1A2, as well as metabolic conversion of caffeine to theophylline in vivo and saturation of theophylline metabolism at higher serum concentrations. In six healthy male volunteers (all smokers), serum concentrations of theophylline (administered as aminophylline 400 mg single oral dose) were significantly higher following consumption of caffeine (2 to 7 cups of instant coffee over 24 hours, equivalent to approximately 120 to 630 mg of caffeine) than after caffeine deprivation for 48 hours. Caffeine consumption also increased the apparent elimination half-life of theophylline by an average of 32% and reduced its total body clearance by 23%. In another study, steady-state concentration and area under the concentration-time curve of theophylline (1200 mg intravenously over 24 hours) increased by 23% and 40%, respectively, in eight healthy volunteers following administration of caffeine (300 mg orally three times a day).

MANAGEMENT: Given the narrow therapeutic index of theophylline, patients should limit or avoid significant fluctuations in their intake of pharmacologic as well as dietary caffeine.

ADJUST DOSING INTERVAL: Administration of theophylline with continuous enteral nutrition may reduce the serum levels or the rate of absorption of theophylline. The mechanism has not been reported. In one case, theophylline levels decreased by 53% in a patient receiving continuous nasogastric tube feedings and occurred with both theophylline tablet and liquid formulations, but not with intravenous aminophylline.

MANAGEMENT: When administered to patients receiving continuous enteral nutrition , some experts recommend that the tube feeding should be interrupted for at least 1 hour before and 1 hour after the dose of theophylline is given; rapid-release formulations are preferable, and theophylline levels should be monitored.

References (3)
  1. Jonkman JH, Sollie FA, Sauter R, Steinijans VW (1991) "The influence of caffeine on the steady-state pharmacokinetics of theophylline." Clin Pharmacol Ther, 49, p. 248-55
  2. Sato J, Nakata H, Owada E, Kikuta T, Umetsu M, Ito K (1993) "Influence of usual intake of dietary caffeine on single-dose kinetics of theophylline in healthy human subjects." Eur J Clin Pharmacol, 44, p. 295-8
  3. Wohlt PD, Zheng L, Gunderson S, Balzar SA, Johnson BD, Fish JT (2009) "Recommendations for the use of medications with continuous enteral nutrition." Am J Health Syst Pharm, 66, p. 1438-67
Moderate

tamoxifen food

Applies to: tamoxifen

GENERALLY AVOID: Due to their estrogenic effect, isoflavones present in soy such as genistein and daidzein may stimulate breast tumor growth and antagonize the antiproliferative action of tamoxifen. Supportive data are derived primarily from in vitro and animal studies. In vitro, low concentrations of these phytoestrogens have been found to promote DNA synthesis and reverse the inhibitory effect of tamoxifen on estrogen-dependent breast cancer cell proliferation. In contrast, high concentrations of genistein greater than 10 microM/L have been found to enhance tamoxifen effects by inhibiting breast cancer cell growth. It is not known if these high concentrations are normally achieved in humans. Plasma concentrations below 4 microM/L have been observed in healthy volunteers given a soy diet for one month or large single doses of genistein. These concentrations are comparable to the low plasma concentrations associated with tumor stimulation reported in animals. In a study of 155 female breast cancer survivors with substantially bothersome hot flashes, a product containing 50 mg of soy isoflavones (40% to 45% genistein; 40% to 45% daidzein; 10% to 20% glycitein) taken three times a day was found to be no more effective than placebo in reducing hot flashes. No toxicity or recurrence of breast cancer was reported during the 9-week study period.

Green tea does not appear to have significant effects on the pharmacokinetics of tamoxifen or its primary active metabolite, endoxifen. In a study consisting of 14 patients who have been receiving tamoxifen treatment at a stable dose of 20 mg (n=13) or 40 mg (n=1) once daily for at least 3 months, coadministration with green tea supplements twice daily for 14 days resulted in no significant differences in the pharmacokinetics of either tamoxifen or endoxifen with respect to peak plasma concentration (Cmax), systemic exposure (AUC), and trough plasma concentration (Cmin) compared to administration of tamoxifen alone. The combination was well tolerated, with all reported adverse events categorized as mild (grade 1) and none categorized as serious or severe (grade 3 or higher) during the entire study. Although some adverse events such as headache, polyuria, gastrointestinal side effects (e.g., constipation, dyspepsia), and minor liver biochemical disturbances were reported more often during concomitant treatment with green tea, most can be attributed to the high dose of green tea used or to the caffeine in green tea. The green tea supplements used were 1000 mg in strength and contained 150 mg of epigallocatechin-3-gallate (EGCG), the most abundant and biologically active catechin in green tea. According to the investigators, the total daily dose of EGCG taken by study participants is equivalent to the amount contained in approximately 5 to 6 cups of regular green tea. However, it is not known to what extent the data from this study may be applicable to other preparations of green tea such as infusions, since the bioavailability of EGCG and other catechins may vary between preparations.

MANAGEMENT: Until more information is available, patients treated with tamoxifen may consider avoiding or limiting the consumption of soy-containing products. Consumption of green tea and green tea extracts during tamoxifen therapy appears to be safe.

References (2)
  1. Therapeutic Research Faculty (2008) Natural Medicines Comprehensive Database. http://www.naturaldatabase.com
  2. Braal CL, Hussaarts KGAM, Seuren L, et al. (2020) "Influence of green tea consumption on endoxifen steady-state concentration in breast cancer patients treated with tamoxifen." Breast Cancer Res Treat, 184, p. 107-13
Moderate

theophylline food

Applies to: Quadrinal (ephedrine / phenobarbital / potassium iodide / theophylline)

GENERALLY AVOID: Coadministration with caffeine may increase the serum concentrations of theophylline. The proposed mechanism involves competitive inhibition of theophylline metabolism via CYP450 1A2, as well as metabolic conversion of caffeine to theophylline in vivo and saturation of theophylline metabolism at higher serum concentrations. In six healthy male volunteers (all smokers), serum concentrations of theophylline (administered as aminophylline 400 mg single oral dose) were significantly higher following consumption of caffeine (2 to 7 cups of instant coffee over 24 hours, equivalent to approximately 120 to 630 mg of caffeine) than after caffeine deprivation for 48 hours. Caffeine consumption also increased the apparent elimination half-life of theophylline by an average of 32% and reduced its total body clearance by 23%. In another study, steady-state concentration and area under the concentration-time curve of theophylline (1200 mg intravenously over 24 hours) increased by 23% and 40%, respectively, in eight healthy volunteers following administration of caffeine (300 mg orally three times a day).

MANAGEMENT: Given the narrow therapeutic index of theophylline, patients should limit or avoid significant fluctuations in their intake of pharmacologic as well as dietary caffeine.

References (2)
  1. Jonkman JH, Sollie FA, Sauter R, Steinijans VW (1991) "The influence of caffeine on the steady-state pharmacokinetics of theophylline." Clin Pharmacol Ther, 49, p. 248-55
  2. Sato J, Nakata H, Owada E, Kikuta T, Umetsu M, Ito K (1993) "Influence of usual intake of dietary caffeine on single-dose kinetics of theophylline in healthy human subjects." Eur J Clin Pharmacol, 44, p. 295-8
Moderate

ePHEDrine food

Applies to: Quadrinal (ephedrine / phenobarbital / potassium iodide / theophylline)

MONITOR: Coadministration of two or more sympathomimetic agents may increase the risk of adverse effects such as nervousness, irritability, and increased heart rate. Central nervous system (CNS) stimulants, particularly amphetamines, can potentiate the adrenergic response to vasopressors and other sympathomimetic agents. Additive increases in blood pressure and heart rate may occur due to enhanced peripheral sympathetic activity.

MANAGEMENT: Caution is advised if two or more sympathomimetic agents are coadministered. Pulse and blood pressure should be closely monitored.

References (7)
  1. Rosenblatt JE, Lake CR, van Kammen DP, Ziegler MG, Bunney WE Jr (1979) "Interactions of amphetamine, pimozide, and lithium on plasma norepineophrine and dopamine-beta-hydroxylase in schizophrenic patients." Psychiatry Res, 1, p. 45-52
  2. Cavanaugh JH, Griffith JD, Oates JA (1970) "Effect of amphetamine on the pressor response to tyramine: formation of p-hydroxynorephedrine from amphetamine in man." Clin Pharmacol Ther, 11, p. 656
  3. (2001) "Product Information. Adderall (amphetamine-dextroamphetamine)." Shire Richwood Pharmaceutical Company Inc
  4. (2001) "Product Information. Tenuate (diethylpropion)." Aventis Pharmaceuticals
  5. (2001) "Product Information. Sanorex (mazindol)." Novartis Pharmaceuticals
  6. (2001) "Product Information. Focalin (dexmethylphenidate)." Mikart Inc
  7. (2002) "Product Information. Strattera (atomoxetine)." Lilly, Eli and Company
Moderate

theophylline food

Applies to: Quadrinal (ephedrine / phenobarbital / potassium iodide / theophylline)

MONITOR: Smoking cessation may lead to elevated plasma concentrations and enhanced pharmacologic effects of drugs that are substrates of CYP450 1A2 (and possibly CYP450 1A1) and/or certain drugs with a narrow therapeutic index (e.g., flecainide, pentazocine). One proposed mechanism is related to the loss of CYP450 1A2 and 1A1 induction by polycyclic aromatic hydrocarbons in tobacco smoke; when smoking cessation agents are initiated and smoking stops, the metabolism of certain drugs may decrease leading to increased plasma concentrations. The mechanism by which smoking cessation affects narrow therapeutic index drugs that are not known substrates of CYP450 1A2 or 1A1 is unknown. The clinical significance of this interaction is unknown as clinical data are lacking.

MANAGEMENT: Until more information is available, caution is advisable if smoking cessation agents are used concomitantly with drugs that are substrates of CYP450 1A2 or 1A1 and/or those with a narrow therapeutic range. Patients receiving smoking cessation agents may require periodic dose adjustments and closer clinical and laboratory monitoring of medications that are substrates of CYP450 1A2 or 1A1.

References (4)
  1. (2024) "Product Information. Cytisine (cytisinicline)." Consilient Health Ltd
  2. jeong sh, Newcombe D, sheridan j, Tingle M (2015) "Pharmacokinetics of cytisine, an a4 b2 nicotinic receptor partial agonist, in healthy smokers following a single dose." Drug Test Anal, 7, p. 475-82
  3. Vaughan DP, Beckett AH, Robbie DS (1976) "The influence of smoking on the intersubject variation in pentazocine elimination." Br J Clin Pharmacol, 3, p. 279-83
  4. Zevin S, Benowitz NL (1999) "Drug interactions with tobacco smoking: an update" Clin Pharmacokinet, 36, p. 425-38

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.