Skip to main content

Drug Interactions between Quadrinal and selumetinib

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Major

PHENobarbital selumetinib

Applies to: Quadrinal (ephedrine / phenobarbital / potassium iodide / theophylline) and selumetinib

GENERALLY AVOID: Coadministration with potent or moderate inducers of CYP450 3A4 may decrease the plasma concentrations of selumetinib, which is primarily metabolized by CYP450 3A4 and to a lesser extent by CYP450 2C19, 1A2, 2C9, 2E1, and 3A5. Selumetinib also undergoes glucuronidation by UGT1A1 and UGT1A3. When coadministered with rifampin, a potent CYP450 3A4 inducer, selumetinib peak plasma concentration (Cmax) and systemic exposure (AUC) decreased by 26% and 51%, respectively. Concomitant use of efavirenz, a moderate CYP450 3A4 inducer, is predicted to decrease selumetinib Cmax and AUC by 22% and 38%, respectively. Reduced efficacy of selumetinib may occur.

MANAGEMENT: Concomitant use of selumetinib with potent or moderate CYP450 3A4 inducers should generally be avoided.

References

  1. (2020) "Product Information. Koselugo (selumetinib)." Astra-Zeneca Pharmaceuticals

Switch to consumer interaction data

Moderate

theophylline PHENobarbital

Applies to: Quadrinal (ephedrine / phenobarbital / potassium iodide / theophylline) and Quadrinal (ephedrine / phenobarbital / potassium iodide / theophylline)

MONITOR: Barbiturates may decrease serum levels and therapeutic effects of the methylxanthines. The mechanism is barbiturate induction of CYP450 3A4 and 1A2 hepatic metabolism of methylxanthines.

MANAGEMENT: Close observation for clinical and laboratory evidence of decreased methylxanthine effect is indicated if these drugs must be used together. Patients should be advised to notify their physician if they experience a worsening of their respiratory symptoms.

References

  1. Upton RA (1991) "Pharmacokinetic interactions between theophylline and other medication (Part I)." Clin Pharmacokinet, 20, p. 66-80
  2. Bukowskyj M, Nakatsu K, Munt PW (1984) "Theophylline reassessed." Ann Intern Med, 101, p. 63-73
  3. Landay RA, Gonzalez MA, Taylor JC (1978) "Effect of phenobarbital on theophylline disposition." J Allergy Clin Immunol, 62, p. 27-9
  4. Dahlqvist R, Steiner E, Koike Y, von Bahr C, Lind M, Billing B (1989) "Induction of theophylline metabolism by pentobarbital." Ther Drug Monit, 11, p. 408-10
View all 4 references

Switch to consumer interaction data

Minor

theophylline ePHEDrine

Applies to: Quadrinal (ephedrine / phenobarbital / potassium iodide / theophylline) and Quadrinal (ephedrine / phenobarbital / potassium iodide / theophylline)

Ephedrine-methylxanthine combinations are used for the treatment of asthma but the efficacy of the combination has been questioned. This combination may lead to increased xanthine side effects. The mechanism is unknown, but may be related to synergistic pharmacologic effects. Patients using this combination should be closely monitored for side effects such as nausea, vomiting, tachycardia, nervousness, or insomnia. If side effects are noted, the dosage of the xanthine may need to be decreased.

References

  1. Weinberger M, Bronsky E, Bensch GW, Bock GN, Yecies JJ (1975) "Interaction of ephedrine and theophylline." Clin Pharmacol Ther, 17, p. 585-92
  2. Sims JA, doPico GA, Reed CE (1978) "Bronchodilating effect of oral theophylline-ephedrine combination." J Allergy Clin Immunol, 62, p. 15-21
  3. Tinkelman DG, Avner SE (1977) "Ephedrine therapy in asthmatic children. Clinical tolerance and absence of side effects." JAMA, 237, p. 553-7
  4. Weinberger MM, Brousky EA (1974) "Evaluation of oral bronchodilator therapy in asthmatic children: bronchodilators in asthmatic children." J Pediatr, 84, p. 421-7
  5. Badiei B, Faciane J, Sly M (1975) "Effect of throphylline, ephedrine and theri combination upon exercise-induced airway obstruction." Ann Allergy, 35, p. 32-6
View all 5 references

Switch to consumer interaction data

Drug and food interactions

Major

selumetinib food

Applies to: selumetinib

GENERALLY AVOID: Grapefruit juice may increase the plasma concentrations of selumetinib, which undergoes metabolism primarily by CYP450 3A4 and to a lesser extent by CYP450 2C19, 1A2, 2C9, 2E1 and 3A5, as well as glucuronidation by UGT1A1 and UGT1A3. The proposed mechanism is inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall by certain compounds present in grapefruit. Inhibition of hepatic CYP450 3A4 may also contribute. The interaction has not been studied with grapefruit juice, but has been reported for other CYP450 3A4 inhibitors. When coadministered with itraconazole, a potent CYP450 3A4 inhibitor, selumetinib peak plasma concentration (Cmax) and systemic exposure (AUC) increased by 19% and 49%, respectively. When coadministered with fluconazole, a potent CYP450 2C19 and moderate CYP450 3A4 inhibitor, selumetinib Cmax and AUC increased by 26% and 53%, respectively. Concomitant use of erythromycin, a moderate CYP450 3A4 inhibitor, is predicted to increase selumetinib Cmax and AUC by 23% and 41%, respectively. In general, the effect of grapefruit juice is concentration-, dose- and preparation-dependent, and can vary widely among brands. Certain preparations of grapefruit juice (e.g., high dose, double strength) have sometimes demonstrated potent inhibition of CYP450 3A4, while other preparations (e.g., low dose, single strength) have typically demonstrated moderate inhibition. Increased exposure to selumetinib may increase the risk and/or severity of serious adverse effects such as cardiomyopathy (decrease in left ventricular ejection fraction by 10% or more below baseline), ocular toxicity (blurred vision, photophobia, cataracts, ocular hypertension, retinal pigment epithelial detachment, retinal vein occlusion), gastrointestinal toxicity (diarrhea, colitis), skin toxicity (dermatitis acneiform, maculopapular rash, eczema), and musculoskeletal toxicity (creatine phosphokinase elevations, myalgia, rhabdomyolysis).

ADJUST DOSING INTERVAL: Food may decrease the rate and extent of the oral absorption of selumetinib. When a single 75 mg dose of selumetinib (1.5 times the approved maximum recommended dose) was administered with a high-fat meal (1000 calories; 50% fat) in healthy adults, mean Cmax and AUC of selumetinib decreased by 50% and 16%, respectively, and time to reach peak concentration (Tmax) was delayed by approximately 1.5 hours compared to administration in the fasted state. When a single 50 mg dose of selumetinib was administered with a low-fat meal (400 calories; 25% fat) in healthy adults, selumetinib Cmax and AUC decreased by 60% and 38%, respectively, and Tmax was delayed by approximately 0.9 hours.

MANAGEMENT: Selumetinib should be administered on an empty stomach at least 1 hour before or 2 hours after a meal. Patients should avoid consumption of grapefruit, grapefruit juice, or supplements that contain grapefruit during treatment with selumetinib.

References

  1. (2020) "Product Information. Koselugo (selumetinib)." Astra-Zeneca Pharmaceuticals

Switch to consumer interaction data

Major

PHENobarbital food

Applies to: Quadrinal (ephedrine / phenobarbital / potassium iodide / theophylline)

GENERALLY AVOID: Concurrent acute use of barbiturates and ethanol may result in additive CNS effects, including impaired coordination, sedation, and death. Tolerance of these agents may occur with chronic use. The mechanism is related to inhibition of microsomal enzymes acutely and induction of hepatic microsomal enzymes chronically.

MANAGEMENT: The combination of ethanol and barbiturates should be avoided.

References

  1. Gupta RC, Kofoed J (1966) "Toxological statistics for barbiturates, other sedatives, and tranquilizers in Ontario: a 10-year survey." Can Med Assoc J, 94, p. 863-5
  2. Misra PS, Lefevre A, Ishii H, Rubin E, Lieber CS (1971) "Increase of ethanol, meprobamate and pentobarbital metabolism after chronic ethanol administration in man and in rats." Am J Med, 51, p. 346-51
  3. Saario I, Linnoila M (1976) "Effect of subacute treatment with hypnotics, alone or in combination with alcohol, on psychomotor skills related to driving." Acta Pharmacol Toxicol (Copenh), 38, p. 382-92
  4. Stead AH, Moffat AC (1983) "Quantification of the interaction between barbiturates and alcohol and interpretation of fatal blood concentrations." Hum Toxicol, 2, p. 5-14
  5. Seixas FA (1979) "Drug/alcohol interactions: avert potential dangers." Geriatrics, 34, p. 89-102
View all 5 references

Switch to consumer interaction data

Moderate

theophylline food

Applies to: Quadrinal (ephedrine / phenobarbital / potassium iodide / theophylline)

GENERALLY AVOID: Coadministration with caffeine may increase the serum concentrations of theophylline. The proposed mechanism involves competitive inhibition of theophylline metabolism via CYP450 1A2, as well as metabolic conversion of caffeine to theophylline in vivo and saturation of theophylline metabolism at higher serum concentrations. In six healthy male volunteers (all smokers), serum concentrations of theophylline (administered as aminophylline 400 mg single oral dose) were significantly higher following consumption of caffeine (2 to 7 cups of instant coffee over 24 hours, equivalent to approximately 120 to 630 mg of caffeine) than after caffeine deprivation for 48 hours. Caffeine consumption also increased the apparent elimination half-life of theophylline by an average of 32% and reduced its total body clearance by 23%. In another study, steady-state concentration and area under the concentration-time curve of theophylline (1200 mg intravenously over 24 hours) increased by 23% and 40%, respectively, in eight healthy volunteers following administration of caffeine (300 mg orally three times a day).

MANAGEMENT: Given the narrow therapeutic index of theophylline, patients should limit or avoid significant fluctuations in their intake of pharmacologic as well as dietary caffeine.

ADJUST DOSING INTERVAL: Administration of theophylline with continuous enteral nutrition may reduce the serum levels or the rate of absorption of theophylline. The mechanism has not been reported. In one case, theophylline levels decreased by 53% in a patient receiving continuous nasogastric tube feedings and occurred with both theophylline tablet and liquid formulations, but not with intravenous aminophylline.

MANAGEMENT: When administered to patients receiving continuous enteral nutrition , some experts recommend that the tube feeding should be interrupted for at least 1 hour before and 1 hour after the dose of theophylline is given; rapid-release formulations are preferable, and theophylline levels should be monitored.

References

  1. Jonkman JH, Sollie FA, Sauter R, Steinijans VW (1991) "The influence of caffeine on the steady-state pharmacokinetics of theophylline." Clin Pharmacol Ther, 49, p. 248-55
  2. Sato J, Nakata H, Owada E, Kikuta T, Umetsu M, Ito K (1993) "Influence of usual intake of dietary caffeine on single-dose kinetics of theophylline in healthy human subjects." Eur J Clin Pharmacol, 44, p. 295-8
  3. Wohlt PD, Zheng L, Gunderson S, Balzar SA, Johnson BD, Fish JT (2009) "Recommendations for the use of medications with continuous enteral nutrition." Am J Health Syst Pharm, 66, p. 1438-67

Switch to consumer interaction data

Moderate

theophylline food

Applies to: Quadrinal (ephedrine / phenobarbital / potassium iodide / theophylline)

GENERALLY AVOID: Coadministration with caffeine may increase the serum concentrations of theophylline. The proposed mechanism involves competitive inhibition of theophylline metabolism via CYP450 1A2, as well as metabolic conversion of caffeine to theophylline in vivo and saturation of theophylline metabolism at higher serum concentrations. In six healthy male volunteers (all smokers), serum concentrations of theophylline (administered as aminophylline 400 mg single oral dose) were significantly higher following consumption of caffeine (2 to 7 cups of instant coffee over 24 hours, equivalent to approximately 120 to 630 mg of caffeine) than after caffeine deprivation for 48 hours. Caffeine consumption also increased the apparent elimination half-life of theophylline by an average of 32% and reduced its total body clearance by 23%. In another study, steady-state concentration and area under the concentration-time curve of theophylline (1200 mg intravenously over 24 hours) increased by 23% and 40%, respectively, in eight healthy volunteers following administration of caffeine (300 mg orally three times a day).

MANAGEMENT: Given the narrow therapeutic index of theophylline, patients should limit or avoid significant fluctuations in their intake of pharmacologic as well as dietary caffeine.

References

  1. Jonkman JH, Sollie FA, Sauter R, Steinijans VW (1991) "The influence of caffeine on the steady-state pharmacokinetics of theophylline." Clin Pharmacol Ther, 49, p. 248-55
  2. Sato J, Nakata H, Owada E, Kikuta T, Umetsu M, Ito K (1993) "Influence of usual intake of dietary caffeine on single-dose kinetics of theophylline in healthy human subjects." Eur J Clin Pharmacol, 44, p. 295-8

Switch to consumer interaction data

Moderate

ePHEDrine food

Applies to: Quadrinal (ephedrine / phenobarbital / potassium iodide / theophylline)

MONITOR: Coadministration of two or more sympathomimetic agents may increase the risk of adverse effects such as nervousness, irritability, and increased heart rate. Central nervous system (CNS) stimulants, particularly amphetamines, can potentiate the adrenergic response to vasopressors and other sympathomimetic agents. Additive increases in blood pressure and heart rate may occur due to enhanced peripheral sympathetic activity.

MANAGEMENT: Caution is advised if two or more sympathomimetic agents are coadministered. Pulse and blood pressure should be closely monitored.

References

  1. Rosenblatt JE, Lake CR, van Kammen DP, Ziegler MG, Bunney WE Jr (1979) "Interactions of amphetamine, pimozide, and lithium on plasma norepineophrine and dopamine-beta-hydroxylase in schizophrenic patients." Psychiatry Res, 1, p. 45-52
  2. Cavanaugh JH, Griffith JD, Oates JA (1970) "Effect of amphetamine on the pressor response to tyramine: formation of p-hydroxynorephedrine from amphetamine in man." Clin Pharmacol Ther, 11, p. 656
  3. (2001) "Product Information. Adderall (amphetamine-dextroamphetamine)." Shire Richwood Pharmaceutical Company Inc
  4. (2001) "Product Information. Tenuate (diethylpropion)." Aventis Pharmaceuticals
  5. (2001) "Product Information. Sanorex (mazindol)." Novartis Pharmaceuticals
  6. (2001) "Product Information. Focalin (dexmethylphenidate)." Mikart Inc
  7. (2002) "Product Information. Strattera (atomoxetine)." Lilly, Eli and Company
View all 7 references

Switch to consumer interaction data

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Loading...
QR code containing a link to this page

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.