Skip to main content

Drug Interactions between Perfalgan Nourrissons Et Enfants and Xultophy

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Moderate

liraglutide insulin degludec

Applies to: Xultophy (insulin degludec / liraglutide) and Xultophy (insulin degludec / liraglutide)

ADJUST DOSE: Coadministration of a glucagon-like peptide-1 (GLP-1) receptor agonist or dual GLP-1 and glucose-dependent insulinotropic polypeptide (GIP) receptor agonist with insulin may potentiate the risk of hypoglycemia. GLP-1 receptor agonists and dual GLP-1 and GIP receptor agonists lower blood glucose by stimulating insulin secretion and lowering glucagon secretion. An increased incidence of hypoglycemia has been observed in patients treated with a combination of basal insulin and GLP-1 or dual GLP-1 and GIP receptor agonists. Additionally, patients with diabetic retinopathy who received treatment with basal insulin and subcutaneous semaglutide in one clinical trial had an increased risk of developing diabetic retinopathy complications. Rapid improvement in glucose control has been associated with a temporary worsening of diabetic retinopathy, but other mechanisms cannot be excluded. The safety and efficacy of GLP-1 or dual GLP-1 and GIP receptor agonists in combination with non-basal insulin have not been established.

MANAGEMENT: When a GLP-1 receptor agonist or dual GLP-1 and GIP receptor agonist is used as add-on therapy to basal insulin, a lower dosage of insulin may be required. Some clinical trials have reduced the basal insulin dose by 20% in patients with a baseline hemoglobin A1c <= 8% when a GLP-1 or dual GLP-1 and GIP receptor agonist was initiated. Because diabetic ketoacidosis has been reported in insulin-dependent patients after rapid discontinuation or dose reduction of insulin, a stepwise approach to insulin dose reduction is recommended and blood glucose levels should be closely monitored. Patients should receive guidance on the recognition and management of hypoglycemia as well as precautions to take to avoid hypoglycemia, particularly while driving or operating hazardous machinery. Those with diabetic retinopathy should also be monitored for progression of the condition or complications. A rapid improvement in glucose control has been associated with a temporary worsening of diabetic retinopathy.

References

  1. "Product Information. Byetta (exenatide)." Amylin Pharmaceuticals Inc (2005):
  2. "Product Information. Victoza (liraglutide)." Novo Nordisk Pharmaceuticals Inc (2010):
  3. "Product Information. Tanzeum (albiglutide)." GlaxoSmithKline (2014):
  4. "Product Information. Trulicity (dulaglutide)." Eli Lilly and Company (2014):
  5. "Product Information. Adlyxin (lixisenatide)." sanofi-aventis (2016):
  6. "Product Information. Ozempic (1 mg dose) (semaglutide)." Novo Nordisk Pharmaceuticals Inc (2022):
  7. "Product Information. Mounjaro (tirzepatide)." Lilly, Eli and Company ORIG-1 (2022):
  8. "Product Information. Wegovy (2.4 mg dose) (semaglutide)." Novo Nordisk Pharmaceuticals Inc SUPPL-3 (2022):
  9. "Product Information. Bydureon BCise (exenatide)." AstraZeneca UK Ltd (2023):
  10. "Product Information. Byetta Prefilled Pen (exenatide)." Astra-Zeneca Pharmaceuticals (2022):
  11. "Product Information. Eperzan (albiglutide)." GlaxoSmithKline UK Ltd (2014):
  12. "Product Information. Trulicity (dulaglutide)." Eli Lilly and Company Ltd (2023):
  13. "Product Information. Saxenda (liraglutide)." Novo Nordisk Ltd (2022):
  14. "Product Information. Victoza (liraglutide)." Novo Nordisk Ltd (2022):
  15. "Product Information. Lyxumia (lixisenatide)." Sanofi (2022):
  16. "Product Information. Ozempic (semaglutide)." Novo Nordisk Ltd (2023):
View all 16 references

Switch to consumer interaction data

Minor

acetaminophen liraglutide

Applies to: Perfalgan Nourrissons Et Enfants (acetaminophen) and Xultophy (insulin degludec / liraglutide)

Liraglutide delays gastric emptying, which may impact the absorption of concomitantly administered oral medications. In pharmacokinetic studies, liraglutide did not affect the absorption of several orally administered medications to any clinically significant extent (see below). For each interaction studied, administration of the interacting drug was timed so that its absorption peak would coincide with the peak plasma concentration of liraglutide (8 to 12 hours).

Acetaminophen: Administration of a single 1000 mg dose of acetaminophen eight hours after liraglutide dosing (1.8 mg/day) at steady state did not change acetaminophen systemic exposure (AUC). However, acetaminophen peak plasma concentration (Cmax) was decreased by 31% and median time to maximal concentration (Tmax) was delayed up to 15 minutes.

Atorvastatin: Administration of a single 40 mg dose of atorvastatin five hours after liraglutide dosing (1.8 mg/day) at steady state did not change atorvastatin systemic exposure (AUC). However, atorvastatin peak plasma concentration (Cmax) was decreased by 38% and median time to maximal concentration (Tmax) was delayed from 1 hour to 3 hours.

Digoxin: Administration of a single 1 mg dose of digoxin seven hours after liraglutide dosing (1.8 mg/day) at steady state resulted in a 31% and 16% reduction in digoxin peak plasma concentration (Cmax) and systemic exposure (AUC), respectively, and a delay in digoxin median time to maximal concentration (Tmax) from 1 hour to 1.5 hours.

Griseofulvin: Coadministration of a single 500 mg dose of griseofulvin with liraglutide (1.8 mg/day) at steady state did not change griseofulvin systemic exposure (AUC) or median time to maximal concentration (Tmax). However, griseofulvin peak plasma concentration (Cmax) increased by 37%.

Lisinopril: Administration of a single 20 mg dose of lisinopril five minutes after liraglutide dosing (1.8 mg/day) at steady state resulted in a 27% and 15% reduction in lisinopril peak plasma concentration (Cmax) and systemic exposure (AUC), respectively, and a delay in lisinopril median time to maximal concentration (Tmax) from 6 hours to 8 hours.

Oral Contraceptives: Administration of a single 0.03 mg-0.15 mg dose of ethinyl estradiol-levonorgestrel oral contraceptive under fed conditions seven hours after liraglutide dosing (1.8 mg/day) at steady state resulted in a 12% and 13% reduction in the peak plasma concentration (Cmax) of ethinyl estradiol and levonorgestrel, respectively, and a delay in median time to maximal concentration (Tmax) by 1.5 hours for both. Ethinyl estradiol systemic exposure (AUC) was not changed, while levonorgestrel AUC increased by 18%.

References

  1. "Product Information. Victoza (liraglutide)." Novo Nordisk Pharmaceuticals Inc (2010):

Switch to consumer interaction data

Drug and food interactions

Major

acetaminophen food

Applies to: Perfalgan Nourrissons Et Enfants (acetaminophen)

GENERALLY AVOID: Chronic, excessive consumption of alcohol may increase the risk of acetaminophen-induced hepatotoxicity, which has included rare cases of fatal hepatitis and frank hepatic failure requiring liver transplantation. The proposed mechanism is induction of hepatic microsomal enzymes during chronic alcohol use, which may result in accelerated metabolism of acetaminophen and increased production of potentially hepatotoxic metabolites.

MANAGEMENT: In general, chronic alcoholics should avoid regular or excessive use of acetaminophen. Alternative analgesic/antipyretic therapy may be appropriate in patients who consume three or more alcoholic drinks per day. However, if acetaminophen is used, these patients should be cautioned not to exceed the recommended dosage (maximum 4 g/day in adults and children 12 years of age or older).

References

  1. Kaysen GA, Pond SM, Roper MH, Menke DJ, Marrama MA "Combined hepatic and renal injury in alcoholics during therapeutic use of acetaminophen." Arch Intern Med 145 (1985): 2019-23
  2. O'Dell JR, Zetterman RK, Burnett DA "Centrilobular hepatic fibrosis following acetaminophen-induced hepatic necrosis in an alcoholic." JAMA 255 (1986): 2636-7
  3. Seeff LB, Cuccherini BA, Zimmerman HJ, Adler E, Benjamin SB "Acetaminophen hepatotoxicity in alcoholics." Ann Intern Med 104 (1986): 399-404
  4. Thummel KE, Slattery JT, Nelson SD "Mechanism by which ethanol diminishes the hepatotoxicity of acetaminophen." J Pharmacol Exp Ther 245 (1988): 129-36
  5. McClain CJ, Kromhout JP, Peterson FJ, Holtzman JL "Potentiation of acetaminophen hepatotoxicity by alcohol." JAMA 244 (1980): 251-3
  6. Kartsonis A, Reddy KR, Schiff ER "Alcohol, acetaminophen, and hepatic necrosis." Ann Intern Med 105 (1986): 138-9
  7. Prescott LF, Critchley JA "Drug interactions affecting analgesic toxicity." Am J Med 75 (1983): 113-6
  8. "Product Information. Tylenol (acetaminophen)." McNeil Pharmaceutical PROD (2002):
  9. Whitcomb DC, Block GD "Association of acetaminopphen hepatotoxicity with fasting and ethanol use." JAMA 272 (1994): 1845-50
  10. Bonkovsky HL "Acetaminophen hepatotoxicity, fasting, and ethanol." JAMA 274 (1995): 301
  11. Nelson EB, Temple AR "Acetaminophen hepatotoxicity, fasting, and ethanol." JAMA 274 (1995): 301
  12. Zimmerman HJ, Maddrey WC "Acetaminophen (paracetamol) hepatotoxicity with regular intake of alcohol: analysis of instances of therapeutic misadventure." Hepatology 22 (1995): 767-73
View all 12 references

Switch to consumer interaction data

Moderate

liraglutide food

Applies to: Xultophy (insulin degludec / liraglutide)

MONITOR: Glucagon-like peptide-1 (GLP-1) receptor agonists and dual GLP-1 and glucose-dependent insulinotropic polypeptide (GIP) receptor agonists can delay gastric emptying, which may impact the absorption of concomitantly administered oral medications. Mild to moderate decreases in plasma concentrations of coadministered drugs have been demonstrated in pharmacokinetic studies for some GLP-1 receptor agonists (e.g., exenatide, lixisenatide), but not others. According to the prescribing information, liraglutide did not affect the absorption of several orally administered drugs to any clinically significant extent, including acetaminophen, atorvastatin, digoxin, griseofulvin, lisinopril, and an oral contraceptive containing ethinyl estradiol-levonorgestrel. Likewise, no clinically relevant effect on absorption was observed for concomitantly administered oral drugs studied with albiglutide (digoxin, ethinyl estradiol-norethindrone, simvastatin, warfarin), dulaglutide (acetaminophen, atorvastatin, digoxin, ethinyl estradiol-norelgestromin, lisinopril, metformin, metoprolol, sitagliptin, warfarin), or semaglutide (atorvastatin, digoxin, ethinyl estradiol-levonorgestrel, metformin, warfarin). The impact of dual GLP-1 and GIP receptor agonist tirzepatide on gastric emptying was reported to be dose- and time-dependent, with the greatest effect observed after a single 5 mg dose but diminished after subsequent doses. When acetaminophen was administered following a single 5 mg dose of tirzepatide, acetaminophen peak plasma concentration (Cmax) was decreased by 50% and its median time to peak plasma concentration (Tmax) delayed by 1 hour. However, no significant impact on acetaminophen Cmax and Tmax was observed after 4 consecutive weekly doses of tirzepatide (5 mg/5 mg/8 mg/10 mg), and the overall exposure (AUC) of acetaminophen was unaffected. Tirzepatide at lower doses of 0.5 mg and 1.5 mg also had minimal effects on acetaminophen exposure.

MANAGEMENT: Although no specific dosage adjustment of concomitant medications is generally recommended based on available data, potential clinical impact on some oral medications cannot be ruled out, particularly those with a narrow therapeutic index or low bioavailability, those that depend on threshold concentrations for efficacy (e.g., antibiotics), and those that require rapid gastrointestinal absorption (e.g., hypnotics, analgesics). Pharmacologic response to concomitantly administered oral medications should be monitored more closely following initiation, dose adjustment, or discontinuation of a GLP-1 receptor agonist or a dual GLP-1 and GIP receptor agonist.

References

  1. "Product Information. Byetta (exenatide)." Amylin Pharmaceuticals Inc (2005):
  2. "Product Information. Victoza (liraglutide)." Novo Nordisk Pharmaceuticals Inc (2010):
  3. "Product Information. Tanzeum (albiglutide)." GlaxoSmithKline (2014):
  4. "Product Information. Trulicity (dulaglutide)." Eli Lilly and Company (2014):
  5. "Product Information. Adlyxin (lixisenatide)." sanofi-aventis (2016):
  6. "Product Information. Ozempic (1 mg dose) (semaglutide)." Novo Nordisk Pharmaceuticals Inc (2022):
  7. "Product Information. Mounjaro (tirzepatide)." Eli Lilly and Company Ltd (2023):
  8. "Product Information. Mounjaro (tirzepatide)." Lilly, Eli and Company (2023):
  9. Eli Lilly Canada Inc. "Product monograph including patient medication information MOUNJARO tirzepatide injection. https://pdf.hres.ca/dpd_pm/00068421.PDF" (2023):
View all 9 references

Switch to consumer interaction data

Moderate

insulin degludec food

Applies to: Xultophy (insulin degludec / liraglutide)

GENERALLY AVOID: Alcohol may cause hypoglycemia or hyperglycemia in patients with diabetes. Hypoglycemia most frequently occurs during acute consumption of alcohol. Even modest amounts can lower blood sugar significantly, especially when the alcohol is ingested on an empty stomach or following exercise. The mechanism involves inhibition of both gluconeogenesis as well as the counter-regulatory response to hypoglycemia. Episodes of hypoglycemia may last for 8 to 12 hours after ethanol ingestion. By contrast, chronic alcohol abuse can cause impaired glucose tolerance and hyperglycemia. Moderate alcohol consumption generally does not affect blood glucose levels in patients with well controlled diabetes. A disulfiram-like reaction (e.g., flushing, headache, and nausea) to alcohol has been reported frequently with the use of chlorpropamide and very rarely with other sulfonylureas.

MANAGEMENT: Patients with diabetes should avoid consuming alcohol if their blood glucose is not well controlled, or if they have hypertriglyceridemia, neuropathy, or pancreatitis. Patients with well controlled diabetes should limit their alcohol intake to one drink daily for women and two drinks daily for men (1 drink = 5 oz wine, 12 oz beer, or 1.5 oz distilled spirits) in conjunction with their normal meal plan. Alcohol should not be consumed on an empty stomach or following exercise.

References

  1. Jerntorp P, Almer LO "Chlorpropamide-alcohol flushing in relation to macroangiopathy and peripheral neuropathy in non-insulin dependent diabetes." Acta Med Scand 656 (1981): 33-6
  2. Jerntorp P, Almer LO, Holin H, et al. "Plasma chlorpropamide: a critical factor in chlorpropamide-alcohol flush." Eur J Clin Pharmacol 24 (1983): 237-42
  3. Barnett AH, Spiliopoulos AJ, Pyke DA, et al. "Metabolic studies in chlorpropamide-alcohol flush positive and negative type 2 (non-insulin dependent) diabetic patients with and without retinopathy." Diabetologia 24 (1983): 213-5
  4. Hartling SG, Faber OK, Wegmann ML, Wahlin-Boll E, Melander A "Interaction of ethanol and glipizide in humans." Diabetes Care 10 (1987): 683-6
  5. "Product Information. Diabinese (chlorpropamide)." Pfizer U.S. Pharmaceuticals PROD (2002):
  6. "Product Information. Glucotrol (glipizide)." Pfizer U.S. Pharmaceuticals PROD (2002):
  7. "Product Information. Diabeta (glyburide)." Hoechst Marion-Roussel Inc, Kansas City, MO.
  8. Skillman TG, Feldman JM "The pharmacology of sulfonylureas." Am J Med 70 (1981): 361-72
  9. "Position Statement: evidence-based nutrition principles and recommendations for the treatment and prevention of diabetes related complications. American Diabetes Association." Diabetes Care 25(Suppl 1) (2002): S50-S60
  10. Cerner Multum, Inc. "UK Summary of Product Characteristics." O 0
View all 10 references

Switch to consumer interaction data

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Loading...
QR code containing a link to this page

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.