Skip to main content

Drug Interactions between Pamelor and Primatene Dual Action

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Major

nortriptyline ePHEDrine

Applies to: Pamelor (nortriptyline) and Primatene Dual Action (ephedrine / guaifenesin / theophylline)

GENERALLY AVOID: Tricyclic antidepressants (TCAs) may markedly enhance the pressor response to parenteral direct-acting sympathomimetic agents and vasoconstrictor-containing local anesthetics. Several-fold increases in the effects of norepinephrine and, to a lesser extent, epinephrine and phenylephrine were reported in healthy subjects pretreated with desipramine, imipramine, or nortriptyline. The mechanism is TCA inhibition of norepinephrine reuptake in adrenergic neurons, resulting in increased stimulation of adrenergic receptors. Clinically, hypertension, throbbing headache, tremor, palpitation, chest pain, and cardiac dysrhythmia have been reported in association with this interaction. Various TCAs have been implicated including amitriptyline, desipramine, imipramine, nortriptyline, and protriptyline. It is not known whether the interaction also occurs with mixed-acting sympathomimetic agents (e.g., dopamine, ephedrine, metaraminol).

MANAGEMENT: Parenteral administration of direct-acting sympathomimetic agents should preferably be avoided during therapy with tricyclic antidepressants except in cases of emergency (e.g., treatment of anaphylaxis). If concomitant use is necessary, initial dose and rate of administration of the sympathomimetic should be reduced, and cardiovascular status including blood pressure should be monitored closely. Although clinical data are lacking, it may be prudent to follow the same precaution with mixed-acting sympathomimetic agents.

References

  1. Mitchell JR, Cavanaugh JH, Arias L, Oates JA (1970) "Guanethidine and related agents. III: antagonism by drugs which inhibit the norepinephrine pump in man." J Clin Invest, 49, p. 1596-604
  2. Svedmyr N (1968) "The influence of a tricyclic antidepressive agent (protriptyline) on some of the circulatory effects of noradrenaline and adrenaline in man." Life Sci, 7, p. 77-84
  3. Boakes AJ, Laurence DR, Teoh PC, Barar FS, Benedikter LT, Pritchard BN (1973) "Interactions between sympathomimetic amines and antidepressant agents in man." Br Med J, 1, p. 311-5
  4. Borg KO, Johnsson G, Jordo L, Lundborg P, Ronn O, Welin-Fogelberg I (1979) "Interaction studies between three antidepressant drugs (zimelidine, imipramine and chlorimipramine) and noradrenaline in healthy volunteers and some pharmacokinetics of the drugs studied." Acta Pharmacol Toxicol (Copenh), 45, p. 198-205
  5. Linnoila M, Karoum F, Calil HM, Kopin IJ, Potter WZ (1982) "Alteration of norepinephrine metabolism with desipramine and zimelidine in depressed patients." Arch Gen Psychiatry, 39, p. 1025-8
  6. ed., Boakes AJ. Vasoconstrictors in local anaesthetics and tricyclic antidepressants. In: Grahame-Smith, DG (1977) "Drug Interactions. QV 38 D7932 1975." Baltimore, MD: University Park Press, p. 275-83
  7. Fritz H, Hagstam KE, Lindqvist B (1965) "Local skin necrosis after intravenous infusion of norepinephrine, and the concept of endotoxinaemia. A clinical study on 10 cases." Acta Med Scand, 178, p. 403-16
  8. Teba L, Schiebel F, Dedhia HV, Lazzell VA (1988) "Beneficial effect of norepinephrine in the treatment of circulatory shock caused by tricyclic antidepressant overdose." Am J Emerg Med, 6, p. 566-8
  9. Goulet JP, Perusse R, Turcotte JY (1992) "Contraindications to vasoconstrictors in dentistry: Part III. Pharmacologic interactions." Oral Surg Oral Med Oral Pathol, 74, p. 692-7
  10. Niemegeers CJ, Lenaerts FM, Artois KS, Janssen PA (1977) "Interaction of drugs with apomorphine, tryptamine and norepinephrine. A new 'in vivo' approach: the ATN-test in rats." Arch Int Pharmacodyn Ther, 227, p. 238-53
  11. Ghose K (1980) "Sympathomimetic amines and tricyclic antidepressant drugs." Neuropharmacology, 19, p. 1251-4
View all 11 references

Switch to consumer interaction data

Minor

theophylline ePHEDrine

Applies to: Primatene Dual Action (ephedrine / guaifenesin / theophylline) and Primatene Dual Action (ephedrine / guaifenesin / theophylline)

Ephedrine-methylxanthine combinations are used for the treatment of asthma but the efficacy of the combination has been questioned. This combination may lead to increased xanthine side effects. The mechanism is unknown, but may be related to synergistic pharmacologic effects. Patients using this combination should be closely monitored for side effects such as nausea, vomiting, tachycardia, nervousness, or insomnia. If side effects are noted, the dosage of the xanthine may need to be decreased.

References

  1. Weinberger M, Bronsky E, Bensch GW, Bock GN, Yecies JJ (1975) "Interaction of ephedrine and theophylline." Clin Pharmacol Ther, 17, p. 585-92
  2. Sims JA, doPico GA, Reed CE (1978) "Bronchodilating effect of oral theophylline-ephedrine combination." J Allergy Clin Immunol, 62, p. 15-21
  3. Tinkelman DG, Avner SE (1977) "Ephedrine therapy in asthmatic children. Clinical tolerance and absence of side effects." JAMA, 237, p. 553-7
  4. Weinberger MM, Brousky EA (1974) "Evaluation of oral bronchodilator therapy in asthmatic children: bronchodilators in asthmatic children." J Pediatr, 84, p. 421-7
  5. Badiei B, Faciane J, Sly M (1975) "Effect of throphylline, ephedrine and theri combination upon exercise-induced airway obstruction." Ann Allergy, 35, p. 32-6
View all 5 references

Switch to consumer interaction data

Drug and food interactions

Moderate

theophylline food

Applies to: Primatene Dual Action (ephedrine / guaifenesin / theophylline)

GENERALLY AVOID: Coadministration with caffeine may increase the serum concentrations of theophylline. The proposed mechanism involves competitive inhibition of theophylline metabolism via CYP450 1A2, as well as metabolic conversion of caffeine to theophylline in vivo and saturation of theophylline metabolism at higher serum concentrations. In six healthy male volunteers (all smokers), serum concentrations of theophylline (administered as aminophylline 400 mg single oral dose) were significantly higher following consumption of caffeine (2 to 7 cups of instant coffee over 24 hours, equivalent to approximately 120 to 630 mg of caffeine) than after caffeine deprivation for 48 hours. Caffeine consumption also increased the apparent elimination half-life of theophylline by an average of 32% and reduced its total body clearance by 23%. In another study, steady-state concentration and area under the concentration-time curve of theophylline (1200 mg intravenously over 24 hours) increased by 23% and 40%, respectively, in eight healthy volunteers following administration of caffeine (300 mg orally three times a day).

MANAGEMENT: Given the narrow therapeutic index of theophylline, patients should limit or avoid significant fluctuations in their intake of pharmacologic as well as dietary caffeine.

ADJUST DOSING INTERVAL: Administration of theophylline with continuous enteral nutrition may reduce the serum levels or the rate of absorption of theophylline. The mechanism has not been reported. In one case, theophylline levels decreased by 53% in a patient receiving continuous nasogastric tube feedings and occurred with both theophylline tablet and liquid formulations, but not with intravenous aminophylline.

MANAGEMENT: When administered to patients receiving continuous enteral nutrition , some experts recommend that the tube feeding should be interrupted for at least 1 hour before and 1 hour after the dose of theophylline is given; rapid-release formulations are preferable, and theophylline levels should be monitored.

References

  1. Jonkman JH, Sollie FA, Sauter R, Steinijans VW (1991) "The influence of caffeine on the steady-state pharmacokinetics of theophylline." Clin Pharmacol Ther, 49, p. 248-55
  2. Sato J, Nakata H, Owada E, Kikuta T, Umetsu M, Ito K (1993) "Influence of usual intake of dietary caffeine on single-dose kinetics of theophylline in healthy human subjects." Eur J Clin Pharmacol, 44, p. 295-8
  3. Wohlt PD, Zheng L, Gunderson S, Balzar SA, Johnson BD, Fish JT (2009) "Recommendations for the use of medications with continuous enteral nutrition." Am J Health Syst Pharm, 66, p. 1438-67

Switch to consumer interaction data

Moderate

nortriptyline food

Applies to: Pamelor (nortriptyline)

GENERALLY AVOID: Concomitant use of ethanol and a tricyclic antidepressant (TCA) may result altered TCA plasma levels and efficacy, and additive impairment of motor skills, especially driving skills. Acute ethanol ingestion may inhibit TCA metabolism, while chronic ingestion of large amounts of ethanol may induce hepatic TCA metabolism.

MANAGEMENT: Patients should be advised to avoid alcohol during TCA therapy. Alcoholics who have undergone detoxification should be monitored for decreased TCA efficacy. Dosage adjustments may be required.

References

  1. Dorian P, Sellers EM, Reed KL, et al. (1983) "Amitriptyline and ethanol: pharmacokinetic and pharmacodynamic interaction." Eur J Clin Pharmacol, 25, p. 325-31
  2. Warrington SJ, Ankier SI, Turner P (1986) "Evaluation of possible interactions between ethanol and trazodone or amitriptyline." Neuropsychobiology, 15, p. 31-7
  3. Sandoz M, Vandel S, Vandel B, Bonin B, Allers G, Volmat R (1983) "Biotransformation of amitriptyline in alcoholic depressive patients." Eur J Clin Pharmacol, 24, p. 615-21
  4. Ciraulo DA, Barnhill JG, Jaffe JH (1988) "Clinical pharmacokinetics of imipramine and desipramine in alcoholics and normal volunteers." Clin Pharmacol Ther, 43, p. 509-18
  5. Seppala T, Linnoila M, Elonen E, Mattila MJ, Makl M (1975) "Effect of tricyclic antidepressants and alcohol on psychomotor skills related to driving." Clin Pharmacol Ther, 17, p. 515-22
  6. Ciraulo DA, Barnhill JG, Jaffe JH, Ciraulo AM, Tarmey MF (1990) "Intravenous pharmacokinetics of 2-hydroxyimipramine in alcoholics and normal controls." J Stud Alcohol, 51, p. 366-72
  7. Ciraulo DA, Alderson LM, Chapron DJ, Jaffe JH, Subbarao B, Kramer PA (1982) "Imipramine disposition in alcoholics." J Clin Psychopharmacol, 2, p. 2-7
View all 7 references

Switch to consumer interaction data

Moderate

theophylline food

Applies to: Primatene Dual Action (ephedrine / guaifenesin / theophylline)

GENERALLY AVOID: Coadministration with caffeine may increase the serum concentrations of theophylline. The proposed mechanism involves competitive inhibition of theophylline metabolism via CYP450 1A2, as well as metabolic conversion of caffeine to theophylline in vivo and saturation of theophylline metabolism at higher serum concentrations. In six healthy male volunteers (all smokers), serum concentrations of theophylline (administered as aminophylline 400 mg single oral dose) were significantly higher following consumption of caffeine (2 to 7 cups of instant coffee over 24 hours, equivalent to approximately 120 to 630 mg of caffeine) than after caffeine deprivation for 48 hours. Caffeine consumption also increased the apparent elimination half-life of theophylline by an average of 32% and reduced its total body clearance by 23%. In another study, steady-state concentration and area under the concentration-time curve of theophylline (1200 mg intravenously over 24 hours) increased by 23% and 40%, respectively, in eight healthy volunteers following administration of caffeine (300 mg orally three times a day).

MANAGEMENT: Given the narrow therapeutic index of theophylline, patients should limit or avoid significant fluctuations in their intake of pharmacologic as well as dietary caffeine.

References

  1. Jonkman JH, Sollie FA, Sauter R, Steinijans VW (1991) "The influence of caffeine on the steady-state pharmacokinetics of theophylline." Clin Pharmacol Ther, 49, p. 248-55
  2. Sato J, Nakata H, Owada E, Kikuta T, Umetsu M, Ito K (1993) "Influence of usual intake of dietary caffeine on single-dose kinetics of theophylline in healthy human subjects." Eur J Clin Pharmacol, 44, p. 295-8

Switch to consumer interaction data

Moderate

ePHEDrine food

Applies to: Primatene Dual Action (ephedrine / guaifenesin / theophylline)

MONITOR: Coadministration of two or more sympathomimetic agents may increase the risk of adverse effects such as nervousness, irritability, and increased heart rate. Central nervous system (CNS) stimulants, particularly amphetamines, can potentiate the adrenergic response to vasopressors and other sympathomimetic agents. Additive increases in blood pressure and heart rate may occur due to enhanced peripheral sympathetic activity.

MANAGEMENT: Caution is advised if two or more sympathomimetic agents are coadministered. Pulse and blood pressure should be closely monitored.

References

  1. Rosenblatt JE, Lake CR, van Kammen DP, Ziegler MG, Bunney WE Jr (1979) "Interactions of amphetamine, pimozide, and lithium on plasma norepineophrine and dopamine-beta-hydroxylase in schizophrenic patients." Psychiatry Res, 1, p. 45-52
  2. Cavanaugh JH, Griffith JD, Oates JA (1970) "Effect of amphetamine on the pressor response to tyramine: formation of p-hydroxynorephedrine from amphetamine in man." Clin Pharmacol Ther, 11, p. 656
  3. (2001) "Product Information. Adderall (amphetamine-dextroamphetamine)." Shire Richwood Pharmaceutical Company Inc
  4. (2001) "Product Information. Tenuate (diethylpropion)." Aventis Pharmaceuticals
  5. (2001) "Product Information. Sanorex (mazindol)." Novartis Pharmaceuticals
  6. (2001) "Product Information. Focalin (dexmethylphenidate)." Mikart Inc
  7. (2002) "Product Information. Strattera (atomoxetine)." Lilly, Eli and Company
View all 7 references

Switch to consumer interaction data

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Loading...
QR code containing a link to this page

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.