Skip to main content

Drug Interactions between pacritinib and propranolol

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Moderate

propranolol pacritinib

Applies to: propranolol and pacritinib

GENERALLY AVOID: Coadministration with pacritinib may increase the plasma concentrations of drugs that are substrates of CYP450 1A2 or 3A4, isoenzymes inhibited in vitro by pacritinib. The mechanism is decreased clearance due to inhibition of CYP450 1A2 and 3A4 activity by pacritinib. Clinical data demonstrating the interaction are currently lacking.

MANAGEMENT: Concomitant use of pacritinib with sensitive substrates of CYP450 1A2 or 3A4 should be avoided. Dosage adjustments as well as clinical and laboratory monitoring may be appropriate for some drugs whenever pacritinib is added to or withdrawn from therapy.

References (1)
  1. (2022) "Product Information. Vonjo (pacritinib)." CTI BioPharma Corp.

Drug and food interactions

Major

pacritinib food

Applies to: pacritinib

GENERALLY AVOID: Theoretically, coadministration with grapefruit juice may increase the plasma concentrations of pacritinib, which is primarily metabolized by CYP450 3A4. The proposed mechanism is inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall by certain compounds present in grapefruit. Inhibition of hepatic CYP450 3A4 may also contribute. The interaction has not been studied with grapefruit juice but has been reported for the potent CYP450 3A4 inhibitor, clarithromycin. In a clinical drug interaction study, a single dose of pacritinib (400 mg) was administered following treatment with clarithromycin (500 mg twice daily for 5 days). The peak plasma concentration (Cmax) and systemic exposure (AUC) of pacritinib increased by 30% and 80%, respectively, compared to pacritinib administered alone. Longer treatment with clarithromycin that results in maximal CYP450 3A4 inhibition may increase pacritinib exposure even higher. In general, the effect of grapefruit juice is concentration-, dose- and preparation-dependent, and can vary widely among brands. Certain preparations of grapefruit juice (e.g., high dose, double strength) have sometimes demonstrated potent inhibition of CYP450 3A4, while other preparations (e.g., low dose, single strength) have typically demonstrated moderate inhibition. Increased exposure to pacritinib may increase the risk of adverse effects such as diarrhea, thrombocytopenia, infection, and QT prolongation.

Pacritinib pharmacokinetics were not significantly affected when administered with a high-fat meal.

MANAGEMENT: Although clinical data are lacking, it may be advisable to avoid consumption of grapefruit or grapefruit juice during treatment with pacritinib. Pacritinib may be administered with or without food.

References (1)
  1. (2022) "Product Information. Vonjo (pacritinib)." CTI BioPharma Corp.
Moderate

propranolol food

Applies to: propranolol

ADJUST DOSING INTERVAL: The bioavailability of propranolol may be enhanced by food.

MANAGEMENT: Patients may be instructed to take propranolol at the same time each day, preferably with or immediately following meals.

References (2)
  1. Olanoff LS, Walle T, Cowart TD, et al. (1986) "Food effects on propranolol systemic and oral clearance: support for a blood flow hypothesis." Clin Pharmacol Ther, 40, p. 408-14
  2. Byrne AJ, McNeil JJ, Harrison PM, Louis W, Tonkin AM, McLean AJ (1984) "Stable oral availability of sustained release propranolol when co-administered with hydralazine or food: evidence implicating substrate delivery rate as a determinant of presystemic drug interactions." Br J Clin Pharmacol, 17, s45-50
Moderate

propranolol food

Applies to: propranolol

ADJUST DOSING INTERVAL: Concurrent administration with calcium salts may decrease the oral bioavailability of atenolol and possibly other beta-blockers. The exact mechanism of interaction is unknown. In six healthy subjects, calcium 500 mg (as lactate, carbonate, and gluconate) reduced the mean peak plasma concentration (Cmax) and area under the concentration-time curve (AUC) of atenolol (100 mg) by 51% and 32%, respectively. The elimination half-life increased by 44%. Twelve hours after the combination, beta-blocking activity (as indicated by inhibition of exercise tachycardia) was reduced compared to that with atenolol alone. However, during a 4-week treatment in six hypertensive patients, there was no difference in blood pressure values between treatments. The investigators suggest that prolongation of the elimination half-life induced by calcium coadministration may have led to atenolol cumulation during long-term dosing, which compensated for the reduced bioavailability.

MANAGEMENT: It may help to separate the administration times of beta-blockers and calcium products by at least 2 hours. Patients should be monitored for potentially diminished beta-blocking effects following the addition of calcium therapy.

References (1)
  1. Kirch W, Schafer-Korting M, Axthelm T, Kohler H, Mutschler E (1981) "Interaction of atenolol with furosemide and calcium and aluminum salts." Clin Pharmacol Ther, 30, p. 429-35
Moderate

propranolol food

Applies to: propranolol

MONITOR: Smoking cessation may lead to elevated plasma concentrations and enhanced pharmacologic effects of drugs that are substrates of CYP450 1A2 (and possibly CYP450 1A1) and/or certain drugs with a narrow therapeutic index (e.g., flecainide, pentazocine). One proposed mechanism is related to the loss of CYP450 1A2 and 1A1 induction by polycyclic aromatic hydrocarbons in tobacco smoke; when smoking cessation agents are initiated and smoking stops, the metabolism of certain drugs may decrease leading to increased plasma concentrations. The mechanism by which smoking cessation affects narrow therapeutic index drugs that are not known substrates of CYP450 1A2 or 1A1 is unknown. The clinical significance of this interaction is unknown as clinical data are lacking.

MANAGEMENT: Until more information is available, caution is advisable if smoking cessation agents are used concomitantly with drugs that are substrates of CYP450 1A2 or 1A1 and/or those with a narrow therapeutic range. Patients receiving smoking cessation agents may require periodic dose adjustments and closer clinical and laboratory monitoring of medications that are substrates of CYP450 1A2 or 1A1.

References (4)
  1. (2024) "Product Information. Cytisine (cytisinicline)." Consilient Health Ltd
  2. jeong sh, Newcombe D, sheridan j, Tingle M (2015) "Pharmacokinetics of cytisine, an a4 b2 nicotinic receptor partial agonist, in healthy smokers following a single dose." Drug Test Anal, 7, p. 475-82
  3. Vaughan DP, Beckett AH, Robbie DS (1976) "The influence of smoking on the intersubject variation in pentazocine elimination." Br J Clin Pharmacol, 3, p. 279-83
  4. Zevin S, Benowitz NL (1999) "Drug interactions with tobacco smoking: an update" Clin Pharmacokinet, 36, p. 425-38

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.