Skip to main content

Drug Interactions between ozanimod and Verelan PM

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Moderate

verapamil ozanimod

Applies to: Verelan PM (verapamil) and ozanimod

MONITOR: The risk of transient bradycardia and atrioventricular (AV) block may be increased during initiation of ozanimod treatment in patients receiving other drugs that slow heart rate or AV conduction such as beta-blockers, certain calcium channel blockers (e.g., diltiazem, verapamil), and digitalis. Ozanimod can cause a decrease in heart rate during initiation of therapy. In two studies, following an initial dose of 0.23 mg, the greatest mean decrease from baseline in heart rate of 1.2 bpm occurred at hour 5 on day 1 and returned to near baseline at hour 6. Following continued up-titration, the maximal heart rate effect of ozanimod occurred on day 8. Heart rates below 40 bpm were not observed. Initiation of ozanimod without dose titration may result in greater decreases in heart rate. Initiation of ozanimod treatment has also resulted in transient AV conduction delays. Reportedly, administration of ozanimod at doses higher than the recommended dosage and without dose titration, first- and second-degree AV block occurred in healthy subjects. However, in two studies which utilized dose titration, second- or third-degree AV block was not reported in patients receiving ozanimod.

MANAGEMENT: Ozanimod has not been adequately studied in patients receiving concomitant therapy with drugs that decrease heart rate. Since initiation of ozanimod may result in a transient decrease in heart rate and AV conduction delays, the manufacturer's product labeling should be consulted for an up-titration scheme to reach the maintenance dosage of ozanimod. This may attenuate the magnitude of heart rate reductions. In addition, advice from a cardiologist should be sought if coadministration of ozanimod is considered in patients with significant QT prolongation (QTcF greater than 450 msec in males or 470 msec in females), patients with arrhythmias requiring treatment with Class 1a or Class III antiarrhythmic agents, patients with ischemic heart disease, heart failure, history of cardiac arrest or myocardial infarction, cerebrovascular disease, or uncontrolled hypertension. Use of ozanimod in patients with a history of second-degree Mobitz type II or higher AV block, sick-sinus syndrome, or sinoatrial heart block is considered contraindicated unless the patient has a functioning pacemaker.

References (1)
  1. (2020) "Product Information. Zeposia (ozanimod)." Celgene Corporation

Drug and food interactions

Moderate

verapamil food

Applies to: Verelan PM (verapamil)

GENERALLY AVOID: Consumption of large quantities of grapefruit juice may be associated with significantly increased plasma concentrations of oral verapamil. The mechanism is inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall by certain compounds present in grapefruits. One study reported no significant effect of a single administration of grapefruit juice on the pharmacokinetics of verapamil in ten hypertensive patients receiving chronic therapy. In another study conducted in nine healthy male volunteers, administration of 120 mg oral verapamil twice daily for 3 days following pretreatment with 200 mL grapefruit juice twice daily for 5 days resulted in a 57% increase in S-verapamil peak plasma concentration (Cmax), a 36% increase in S-verapamil systemic exposure (AUC), a 40% increase in R-verapamil Cmax, and a 28% increase in R-verapamil AUC compared to administration following orange juice. Elimination half-life and renal clearance of both S- and R-verapamil were not affected by grapefruit juice, and there were no significant effects on blood pressure, heart rate, or PR interval. A third study reported a 1.63-fold increase in Cmax and a 1.45-fold increase in AUC of (R,S)-verapamil in 24 young, healthy volunteers given verapamil sustained-release 120 mg twice daily for 7 days with 250 mL grapefruit juice four times daily on days 5 through 7. Two subjects developed PR interval prolongation of more than 350 ms during grapefruit juice coadministration. A high degree of interindividual variability has been observed in these studies. The interaction was also suspected in a case report of a 42-year-old woman who developed complete heart block, hypotension, hypoxic respiratory failure, severe anion gap metabolic acidosis, and hyperglycemia following accidental ingestion of three verapamil sustained-release 120 mg tablets over a span of six hours. The patient's past medical history was remarkable only for migraine headaches, for which she was receiving several medications including verapamil. Prior to admission, the patient had a 2-week history of poorly controlled migraine, and the six hours preceding hospitalization she suffered from worsening headache and palpitations progressing to altered sensorium. An extensive workup revealed elevated verapamil and norverapamil levels more than 4.5 times above the upper therapeutic limits. These levels also far exceeded those reported in the medical literature for patients taking verapamil 120 mg every 6 hours, or 480 mg in a 24-hour period. The patient recovered after receiving ventilator and vasopressor support. Upon questioning, it was discovered that the patient had been drinking large amounts of grapefruit juice (3 to 4 liters total) the week preceding her admission due to nausea. No other sources or contributing factors could be found for the verapamil toxicity.

MANAGEMENT: Patients treated with oral verapamil should avoid the consumption of large amounts of grapefruit or grapefruit juice to prevent any undue fluctuations in serum drug levels. Patients should be advised to seek medical attention if they experience edema or swelling of the lower extremities; sudden, unexplained weight gain; difficulty breathing; chest pain or tightness; or hypotension as indicated by dizziness, fainting, or orthostasis.

References (9)
  1. McAllister RG, Jr (1982) "Clinical pharmacology of slow channel blocking agents." Prog Cardiovasc Dis, 25, p. 83-102
  2. (2001) "Product Information. Covera-HS (verapamil)." Searle
  3. Zaidenstein R, Dishi V, Gips M, Soback S, Cohen N, Weissgarten J, Blatt A, Golik A (1998) "The effect of grapefruit juice on the pharmacokinetics of orally administered verapamil." Eur J Clin Pharmacol, 54, p. 337-40
  4. Ho PC, Ghose K, Saville D, Wanwimolruk S (2000) "Effect of grapefruit juice on pharmacokinetics and pharmacodynamics of verapamil enantiomers in healthy volunteers." Eur J Clin Pharmacol, 56, p. 693-8
  5. Fuhr U, Muller-Peltzer H, Kern R, et al. (2002) "Effects of grapefruit juice and smoking on verapamil concentrations in steady state." Eur J Clin Pharmacol, 58, p. 45-53
  6. Bailey DG, Dresser GK (2004) "Natural products and adverse drug interactions." Can Med Assoc J, 170, p. 1531-2
  7. Bailey DG, Malcolm J, Arnold O, Spence JD (2004) "Grapefruit juice-drug interactions. 1998." Br J Clin Pharmacol, 58, S831-40; discussion S841-3
  8. Arayne MS, Sultana N, Bibi Z (2005) "Review: grape fruit juice - drug interactions." Pak J Pharm Sci, 18, p. 45-57
  9. Pillai U, Muzaffar J, Sandeep S, Yancey A (2009) "Grapefruit juice and verapamil: a toxic cocktail." South Med J, 102, p. 308-9
Moderate

ozanimod food

Applies to: ozanimod

GENERALLY AVOID: Foods that contain large amounts of tyramine may precipitate a hypertensive crisis in patients treated with ozanimod. The proposed mechanism involves potentiation of the tyramine pressor effect due to inhibition of monoamine oxidase (MAO) by the major active metabolites of ozanimod, CC112273 and CC1084037. Monoamine oxidase in the gastrointestinal tract and liver, primarily type A (MAO-A), is the enzyme responsible for metabolizing exogenous amines such as tyramine and preventing them from being absorbed intact. Once absorbed, tyramine is metabolized to octopamine, a substance that is believed to displace norepinephrine from storage granules causing a rise in blood pressure. In vitro, CC112273 and CC1084037 inhibited MAO-B (IC50 values of 5.72 nM and 58 nM, respectively) with more than 1000-fold selectivity over MAO-A (IC50 values >10000 nM). Because of this selectivity, as well as the fact that free plasma concentrations of CC112273 and CC1084037 are less than 8% of the in vitro IC50 values for MAO-B inhibition, ozanimod is expected to have a much lower propensity to cause hypertensive crises than nonselective MAO inhibitors. However, rare cases of hypertensive crisis have occurred during clinical trials for the treatment of multiple sclerosis (MS) and ulcerative colitis (UC) and in postmarketing use. In controlled clinical trials, hypertension and blood pressure increases were reported more frequently in patients treated with ozanimod (up to 4.6% in MS patients receiving ozanimod 0.92 mg/day) than in patients treated with interferon beta-1a (MS) or placebo (UC).

Administration of ozanimod with either a high-fat, high-calorie meal (1000 calories; 50% fat) or a low-fat, low-calorie meal (300 calories; 10% fat) had no effects on ozanimod peak plasma concentration (Cmax) and systemic exposure (AUC) compared to administration under fasted conditions.

MANAGEMENT: Dietary restriction is not ordinarily required during ozanimod treatment with respect to most foods and beverages that contain tyramine, which usually include aged, fermented, cured, smoked, or pickled foods (e.g., air-dried and fermented meats or fish, aged cheeses, most soybean products, yeast extracts, red wine, beer, sauerkraut). However, certain foods like some of the aged cheeses (e.g., Boursault, Liederkrantz, Mycella, Stilton) and pickled herring may contain very high amounts of tyramine and could potentially cause a hypertensive reaction in patients taking ozanimod, even at recommended dosages, due to increased sensitivity to tyramine. Patients should be advised to avoid the intake of very high levels of tyramine (e.g., greater than 150 mg) and to promptly seek medical attention if they experience potential signs and symptoms of a hypertensive crisis such as severe headache, visual disturbances, confusion, stupor, seizures, chest pain, unexplained nausea or vomiting, and stroke-like symptoms. Blood pressure should be regularly monitored and managed accordingly. Because of the long elimination half-lives of the major active metabolites, these precautions may need to be observed for up to 3 months following the last ozanimod dose. Ozanimod can be administered with or without food.

References (5)
  1. (2022) "Product Information. Zeposia (ozanimod)." Celgene Pty Ltd
  2. (2023) "Product Information. Zeposia (ozanimod)." Bristol-Myers Squibb
  3. (2023) "Product Information. Zeposia (ozanimod)." Bristol-Myers Squibb Canada Inc
  4. (2023) "Product Information. Zeposia (ozanimod)." Bristol-Myers Squibb Pharmaceuticals Ltd
  5. Choi DK, Rubin DT, Puangampai A, Cleveland N (2022) "Hypertensive emergency after initiating ozanimod: a case report." Inflamm Bowel Dis, 28, e114-5
Moderate

verapamil food

Applies to: Verelan PM (verapamil)

GENERALLY AVOID: Verapamil may increase the blood concentrations and intoxicating effects of ethanol. The exact mechanism of interaction is unknown but may involve verapamil inhibition of ethanol metabolism. In 10 healthy, young volunteers, verapamil (80 mg orally every 8 hours for 6 days) increased the mean peak blood concentration (Cmax) and the 12-hour area under the concentration-time curve (AUC) of ethanol (0.8 g/kg single oral dose) by 17% and 30%, respectively, compared to placebo. Verapamil AUCs were positively correlated to increased ethanol blood AUC values. Subjectively (i.e. each subject's perception of intoxication as measured on a visual analog scale), verapamil also significantly increased the area under the ethanol effect versus time curve but did not change the peak effect or time to peak effect.

MANAGEMENT: Patients treated with verapamil should be counseled to avoid alcohol consumption.

References (2)
  1. Bauer LA, Schumock G, Horn J, Opheim K (1992) "Verapamil inhibits ethanol elimination and prolongs the perception of intoxication." Clin Pharmacol Ther, 52, p. 6-10
  2. (2001) "Product Information. Isoptin (verapamil)." Knoll Pharmaceutical Company
Moderate

verapamil food

Applies to: Verelan PM (verapamil)

MONITOR: Calcium-containing products may decrease the effectiveness of calcium channel blockers by saturating calcium channels with calcium. Calcium chloride has been used to manage acute severe verapamil toxicity.

MANAGEMENT: Management consists of monitoring the effectiveness of calcium channel blocker therapy during coadministration with calcium products.

References (14)
  1. Henry M, Kay MM, Viccellio P (1985) "Cardiogenic shock associated with calcium-channel and beta blockers: reversal with intravenous calcium chloride." Am J Emerg Med, 3, p. 334-6
  2. Moller IW (1987) "Cardiac arrest following intravenous verapamil combined with halothane anaesthesia." Br J Anaesth, 59, p. 522-6
  3. Oszko MA, Klutman NE (1987) "Use of calcium salts during cardiopulmonary resuscitation for reversing verapamil-associated hypotension." Clin Pharm, 6, p. 448-9
  4. Schoen MD, Parker RB, Hoon TJ, et al. (1991) "Evaluation of the pharmacokinetics and electrocardiographic effects of intravenous verapamil with intravenous calcium chloride pretreatment in normal subjects." Am J Cardiol, 67, p. 300-4
  5. O'Quinn SV, Wohns DH, Clarke S, Koch G, Patterson JH, Adams KF (1990) "Influence of calcium on the hemodynamic and anti-ischemic effects of nifedipine observed during treadmill exercise testing." Pharmacotherapy, 10, p. 247
  6. Woie L, Storstein L (1981) "Successful treatment of suicidal verapamil poisoning with calcium gluconate." Eur Heart J, 2, p. 239-42
  7. Morris DL, Goldschlager N (1983) "Calcium infusion for reversal of adverse effects of intravenous verapamil." JAMA, 249, p. 3212-3
  8. Guadagnino V, Greengart A, Hollander G, Solar M, Shani J, Lichstein E (1987) "Treatment of severe left ventricular dysfunction with calcium chloride in patients receiving verapamil." J Clin Pharmacol, 27, p. 407-9
  9. Luscher TF, Noll G, Sturmer T, Huser B, Wenk M (1994) "Calcium gluconate in severe verapamil intoxication." N Engl J Med, 330, p. 718-20
  10. Bar-Or D, Gasiel Y (1981) "Calcium and calciferol antagonise effect of verapamil in atrial fibrillation." Br Med J (Clin Res Ed), 282, p. 1585-6
  11. Lipman J, Jardine I, Roos C, Dreosti L (1982) "Intravenous calcium chloride as an antidote to verapamil-induced hypotension." Intensive Care Med, 8, p. 55-7
  12. McMillan R (1988) "Management of acute severe verapamil intoxication." J Emerg Med, 6, p. 193-6
  13. Perkins CM (1978) "Serious verapamil poisoning: treatment with intravenous calcium gluconate." Br Med J, 2, p. 1127
  14. Moroni F, Mannaioni PF, Dolara A, Ciaccheri M (1980) "Calcium gluconate and hypertonic sodium chloride in a case of massive verapamil poisoning." Clin Toxicol, 17, p. 395-400

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.