Skip to main content

Drug Interactions between Orbivan CF and Ortho-Novum 10/11

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Moderate

acetaminophen butalbital

Applies to: Orbivan CF (acetaminophen / butalbital) and Orbivan CF (acetaminophen / butalbital)

MONITOR: Barbiturates may increase the hepatotoxic potential of acetaminophen and decrease its therapeutic effects. The mechanism may be related to accelerated CYP450 metabolism of acetaminophen with consequent increase in hepatotoxic metabolites. This interaction is of greatest concern in cases of acetaminophen overdose.

MANAGEMENT: Monitoring for altered efficacy and safety is recommended. Prolonged use or high doses of acetaminophen should be avoided by patients on barbiturate therapy.

References

  1. Pirotte JH "Apparent potentiation by phenobarbital of hepatotoxicity from small doses of acetaminophen." Ann Intern Med 101 (1984): 403
  2. Douidar SM, Ahmed AE "A novel mechanism for the enhancement of acetaminophen hepatotoxicity by phenobarbital." J Pharmacol Exp Ther 240 (1987): 578-83
  3. Wright N, Prescott LF "Potentiation by previous drug therapy of hepatotoxicity following paracetamol overdose." Scott Med J 18 (1973): 56-8
  4. Bock KW, Wiltfang J, Blume R, Ullrich D, Bircher J "Paracetamol as a test drug to determine glucuronide formation in man: effects of inducers and of smoking." Eur J Clin Pharmacol 31 (1987): 677-83
View all 4 references

Switch to consumer interaction data

Moderate

ethinyl estradiol butalbital

Applies to: Ortho-Novum 10 / 11 (ethinyl estradiol / norethindrone) and Orbivan CF (acetaminophen / butalbital)

ADDITIONAL CONTRACEPTION RECOMMENDED: Coadministration with a barbiturate may reduce the efficacy of contraceptive hormones. There have been numerous case reports of menstrual abnormalities (e.g., breakthrough bleeding, amenorrhea, irregular menses) and unintended pregnancy occurring in women who received oral contraceptives with phenobarbital. In a study of four women treated chronically with a contraceptive pill containing 50 mcg of ethinyl estradiol, coadministration with phenobarbital (30 mg twice a day) was associated with breakthrough bleeding and a greater than 60% reduction in plasma ethinyl estradiol concentration in two of the women. The interaction stems from accelerated clearance of contraceptive hormones as well as decreased plasma concentrations of unbound (active) hormones due to induction of hepatic CYP450 enzymatic activity and enhancement of hormone-binding globulin capacity by phenobarbital. Since all barbiturates are believed to possess enzyme-inducing capabilities, the interaction should be expected with agents in the class other than phenobarbital.

MANAGEMENT: Women using hormonal contraceptives should be advised of the risk of breakthrough bleeding and unintended pregnancy during concomitant therapy with barbiturates. Alternative or additional methods of birth control should be used during and for at least one week after short-term and 4 weeks after long-term (greater than 4 weeks) barbiturate therapy. No precautions or recommendations are available for women using hormone-releasing intrauterine systems, but a significant interaction with these systems is thought to be unlikely due to their local action. Injectable progestin-only contraceptives are also thought to be unaffected by barbiturates. Input from a gynecologist or similar expert on adequate contraception, including emergency contraception, should be sought as needed.

References

  1. Baciewicz AM "Oral contraceptive drug interactions." Ther Drug Monit 7 (1985): 26-35
  2. Mumford JP "Letter: Drugs affecting oral contraceptives." Br Med J 2 (1974): 333-4
  3. Back DJ, Bates M, Bowden A, et al. "The interaction of phenobarbital and other anticonvulsants with oral contraceptive steroid therapy." Contraception 22 (1980): 495-503
  4. Dossetor J "Drug interactions with oral contraceptives." Br Med J 4 (1975): 467-8
  5. Furlan AJ, Rothner AD "Anti-epileptic drugs and failure of oral contraceptives." Lancet 1 (1974): 1113
  6. Coulam CB, Annegers JF "Do anticonvulsants reduce the efficacy of oral contraceptives?" Epilepsia 20 (1979): 519-26
  7. Szoka PR, Edgren RA "Drug interactions with oral contraceptives: compilation and analysis of an adverse experience report database." Fertil Steril 49 (1988): s31-8
  8. Mattson RH, Cramer JA, Darney PD, Naftolin F "Use of oral contraceptives by women with epilepsy." JAMA 256 (1986): 238-40
  9. Laengner H, Detering K "Letter: Anti-epileptic drugs and failure of oral contraceptives." Lancet 2 (1974): 600
  10. Curran MA "Drug interactions with the pill." Med J Aust 144 (1986): 670-1
  11. Back DJ, Orme ML "Pharmacokinetic drug interactions with oral contraceptives." Clin Pharmacokinet 18 (1990): 472-84
  12. D'Arcy PF "Drug interactions with oral contraceptives." Drug Intell Clin Pharm 20 (1986): 353-62
  13. Kleier DJ, Tucker JE "Oral contraceptive failure secondary to dentally prescribed drugs: fact or fiction?" J Colo Dent Assoc 66 (1987): 5-6
  14. Back DJ, Breckenridge AM, Crawford FE, MacIver M, Orne ML, Rowe PH "Interindividual variation and drug interactions with hormonal steroid contraceptives." Drugs 21 (1981): 46-61
  15. Shane-McWorter L, Cerveny JD, MacFarlane LL, Osborn C "Enhanced metabolism of levonorgestrel during phenobarbital treatment and resultant pregnancy." Pharmacotherapy 18 (1998): 1360-4
  16. Haukkamaa M "Contraception by Norplant subdermal capsules is not reliable in epileptic patients on anticonvulsant treatment." Contraception 33 (1986): 559-65
  17. "Product Information. Norplant System (levonorgestrel)." Wyeth-Ayerst Laboratories PROD (2001):
  18. Back DJ, Grimmer SF, Orme ML, Proudlove D, Mann RD, Breckenridge AM "Evaluation of Committee on Safety of Medicines yellow card reports on oral contraceptive-drug interactions with anticonvulsants and antibiotics." Br J Clin Pharmacol 25 (1988): 527-32
  19. O'Brien MD, Guillebaud J "Contraception for women with epilepsy." Epilepsia 47 (2006): 1419-22
  20. Faculty of Sexual & Reproductive Healthcare "FSRH Clinical Guidance: Drug Interactions with Hormonal Contraception. file:///C:/Users/df033684/Downloads/ceuguidancedruginteractionshormonal.pdf" (2016):
View all 20 references

Switch to consumer interaction data

Moderate

norethindrone butalbital

Applies to: Ortho-Novum 10 / 11 (ethinyl estradiol / norethindrone) and Orbivan CF (acetaminophen / butalbital)

ADDITIONAL CONTRACEPTION RECOMMENDED: Coadministration with a barbiturate may reduce the efficacy of contraceptive hormones. There have been numerous case reports of menstrual abnormalities (e.g., breakthrough bleeding, amenorrhea, irregular menses) and unintended pregnancy occurring in women who received oral contraceptives with phenobarbital. In a study of four women treated chronically with a contraceptive pill containing 50 mcg of ethinyl estradiol, coadministration with phenobarbital (30 mg twice a day) was associated with breakthrough bleeding and a greater than 60% reduction in plasma ethinyl estradiol concentration in two of the women. The interaction stems from accelerated clearance of contraceptive hormones as well as decreased plasma concentrations of unbound (active) hormones due to induction of hepatic CYP450 enzymatic activity and enhancement of hormone-binding globulin capacity by phenobarbital. Since all barbiturates are believed to possess enzyme-inducing capabilities, the interaction should be expected with agents in the class other than phenobarbital.

MANAGEMENT: Women using hormonal contraceptives should be advised of the risk of breakthrough bleeding and unintended pregnancy during concomitant therapy with barbiturates. Alternative or additional methods of birth control should be used during and for at least one week after short-term and 4 weeks after long-term (greater than 4 weeks) barbiturate therapy. No precautions or recommendations are available for women using hormone-releasing intrauterine systems, but a significant interaction with these systems is thought to be unlikely due to their local action. Injectable progestin-only contraceptives are also thought to be unaffected by barbiturates. Input from a gynecologist or similar expert on adequate contraception, including emergency contraception, should be sought as needed.

References

  1. Baciewicz AM "Oral contraceptive drug interactions." Ther Drug Monit 7 (1985): 26-35
  2. Mumford JP "Letter: Drugs affecting oral contraceptives." Br Med J 2 (1974): 333-4
  3. Back DJ, Bates M, Bowden A, et al. "The interaction of phenobarbital and other anticonvulsants with oral contraceptive steroid therapy." Contraception 22 (1980): 495-503
  4. Dossetor J "Drug interactions with oral contraceptives." Br Med J 4 (1975): 467-8
  5. Furlan AJ, Rothner AD "Anti-epileptic drugs and failure of oral contraceptives." Lancet 1 (1974): 1113
  6. Coulam CB, Annegers JF "Do anticonvulsants reduce the efficacy of oral contraceptives?" Epilepsia 20 (1979): 519-26
  7. Szoka PR, Edgren RA "Drug interactions with oral contraceptives: compilation and analysis of an adverse experience report database." Fertil Steril 49 (1988): s31-8
  8. Mattson RH, Cramer JA, Darney PD, Naftolin F "Use of oral contraceptives by women with epilepsy." JAMA 256 (1986): 238-40
  9. Laengner H, Detering K "Letter: Anti-epileptic drugs and failure of oral contraceptives." Lancet 2 (1974): 600
  10. Curran MA "Drug interactions with the pill." Med J Aust 144 (1986): 670-1
  11. Back DJ, Orme ML "Pharmacokinetic drug interactions with oral contraceptives." Clin Pharmacokinet 18 (1990): 472-84
  12. D'Arcy PF "Drug interactions with oral contraceptives." Drug Intell Clin Pharm 20 (1986): 353-62
  13. Kleier DJ, Tucker JE "Oral contraceptive failure secondary to dentally prescribed drugs: fact or fiction?" J Colo Dent Assoc 66 (1987): 5-6
  14. Back DJ, Breckenridge AM, Crawford FE, MacIver M, Orne ML, Rowe PH "Interindividual variation and drug interactions with hormonal steroid contraceptives." Drugs 21 (1981): 46-61
  15. Shane-McWorter L, Cerveny JD, MacFarlane LL, Osborn C "Enhanced metabolism of levonorgestrel during phenobarbital treatment and resultant pregnancy." Pharmacotherapy 18 (1998): 1360-4
  16. Haukkamaa M "Contraception by Norplant subdermal capsules is not reliable in epileptic patients on anticonvulsant treatment." Contraception 33 (1986): 559-65
  17. "Product Information. Norplant System (levonorgestrel)." Wyeth-Ayerst Laboratories PROD (2001):
  18. Back DJ, Grimmer SF, Orme ML, Proudlove D, Mann RD, Breckenridge AM "Evaluation of Committee on Safety of Medicines yellow card reports on oral contraceptive-drug interactions with anticonvulsants and antibiotics." Br J Clin Pharmacol 25 (1988): 527-32
  19. O'Brien MD, Guillebaud J "Contraception for women with epilepsy." Epilepsia 47 (2006): 1419-22
  20. Faculty of Sexual & Reproductive Healthcare "FSRH Clinical Guidance: Drug Interactions with Hormonal Contraception. file:///C:/Users/df033684/Downloads/ceuguidancedruginteractionshormonal.pdf" (2016):
View all 20 references

Switch to consumer interaction data

Minor

acetaminophen ethinyl estradiol

Applies to: Orbivan CF (acetaminophen / butalbital) and Ortho-Novum 10 / 11 (ethinyl estradiol / norethindrone)

Oral contraceptives may decrease or delay the effects of acetaminophen by increasing glucuronidation. With the usual therapeutic dosage, concurrent administration probably results in no significant additional risk.

References

  1. Ochs HR, Greenblatt DJ, Verburg-Ochs B, Abernethy DR, Knuchel M "Differential effects of isoniazid and oral contraceptive steroids on antipyrine oxidation and acetaminophen conjugation." Pharmacology 28 (1984): 188-95
  2. Miners JO, Attwood J, Birkett DJ "Influence of sex and oral contraceptive steroids on paracetamol metabolism." Br J Clin Pharmacol 16 (1983): 503-9
  3. Abernethy DR, Divoll M, Ochs HR, Ameer B, Greenblatt DJ "Increased metabolic clearance of acetaminophen with oral contraceptive use." Obstet Gynecol 60 (1982): 338-41

Switch to consumer interaction data

Drug and food interactions

Major

acetaminophen food

Applies to: Orbivan CF (acetaminophen / butalbital)

GENERALLY AVOID: Chronic, excessive consumption of alcohol may increase the risk of acetaminophen-induced hepatotoxicity, which has included rare cases of fatal hepatitis and frank hepatic failure requiring liver transplantation. The proposed mechanism is induction of hepatic microsomal enzymes during chronic alcohol use, which may result in accelerated metabolism of acetaminophen and increased production of potentially hepatotoxic metabolites.

MANAGEMENT: In general, chronic alcoholics should avoid regular or excessive use of acetaminophen. Alternative analgesic/antipyretic therapy may be appropriate in patients who consume three or more alcoholic drinks per day. However, if acetaminophen is used, these patients should be cautioned not to exceed the recommended dosage (maximum 4 g/day in adults and children 12 years of age or older).

References

  1. Kaysen GA, Pond SM, Roper MH, Menke DJ, Marrama MA "Combined hepatic and renal injury in alcoholics during therapeutic use of acetaminophen." Arch Intern Med 145 (1985): 2019-23
  2. O'Dell JR, Zetterman RK, Burnett DA "Centrilobular hepatic fibrosis following acetaminophen-induced hepatic necrosis in an alcoholic." JAMA 255 (1986): 2636-7
  3. Seeff LB, Cuccherini BA, Zimmerman HJ, Adler E, Benjamin SB "Acetaminophen hepatotoxicity in alcoholics." Ann Intern Med 104 (1986): 399-404
  4. Thummel KE, Slattery JT, Nelson SD "Mechanism by which ethanol diminishes the hepatotoxicity of acetaminophen." J Pharmacol Exp Ther 245 (1988): 129-36
  5. McClain CJ, Kromhout JP, Peterson FJ, Holtzman JL "Potentiation of acetaminophen hepatotoxicity by alcohol." JAMA 244 (1980): 251-3
  6. Kartsonis A, Reddy KR, Schiff ER "Alcohol, acetaminophen, and hepatic necrosis." Ann Intern Med 105 (1986): 138-9
  7. Prescott LF, Critchley JA "Drug interactions affecting analgesic toxicity." Am J Med 75 (1983): 113-6
  8. "Product Information. Tylenol (acetaminophen)." McNeil Pharmaceutical PROD (2002):
  9. Whitcomb DC, Block GD "Association of acetaminopphen hepatotoxicity with fasting and ethanol use." JAMA 272 (1994): 1845-50
  10. Bonkovsky HL "Acetaminophen hepatotoxicity, fasting, and ethanol." JAMA 274 (1995): 301
  11. Nelson EB, Temple AR "Acetaminophen hepatotoxicity, fasting, and ethanol." JAMA 274 (1995): 301
  12. Zimmerman HJ, Maddrey WC "Acetaminophen (paracetamol) hepatotoxicity with regular intake of alcohol: analysis of instances of therapeutic misadventure." Hepatology 22 (1995): 767-73
View all 12 references

Switch to consumer interaction data

Major

butalbital food

Applies to: Orbivan CF (acetaminophen / butalbital)

GENERALLY AVOID: Concurrent acute use of barbiturates and ethanol may result in additive CNS effects, including impaired coordination, sedation, and death. Tolerance of these agents may occur with chronic use. The mechanism is related to inhibition of microsomal enzymes acutely and induction of hepatic microsomal enzymes chronically.

MANAGEMENT: The combination of ethanol and barbiturates should be avoided.

References

  1. Gupta RC, Kofoed J "Toxological statistics for barbiturates, other sedatives, and tranquilizers in Ontario: a 10-year survey." Can Med Assoc J 94 (1966): 863-5
  2. Misra PS, Lefevre A, Ishii H, Rubin E, Lieber CS "Increase of ethanol, meprobamate and pentobarbital metabolism after chronic ethanol administration in man and in rats." Am J Med 51 (1971): 346-51
  3. Saario I, Linnoila M "Effect of subacute treatment with hypnotics, alone or in combination with alcohol, on psychomotor skills related to driving." Acta Pharmacol Toxicol (Copenh) 38 (1976): 382-92
  4. Stead AH, Moffat AC "Quantification of the interaction between barbiturates and alcohol and interpretation of fatal blood concentrations." Hum Toxicol 2 (1983): 5-14
  5. Seixas FA "Drug/alcohol interactions: avert potential dangers." Geriatrics 34 (1979): 89-102
View all 5 references

Switch to consumer interaction data

Moderate

norethindrone food

Applies to: Ortho-Novum 10 / 11 (ethinyl estradiol / norethindrone)

MONITOR: Grapefruit juice may increase the plasma concentrations of orally administered drugs that are substrates of the CYP450 3A4 isoenzyme. The proposed mechanism is inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall by certain compounds present in grapefruit. Because grapefruit juice inhibits primarily intestinal rather than hepatic CYP450 3A4, the magnitude of interaction is greatest for those drugs that undergo significant presystemic metabolism by CYP450 3A4 (i.e., drugs with low oral bioavailability). In general, the effect of grapefruit juice is concentration-, dose- and preparation-dependent, and can vary widely among brands. Certain preparations of grapefruit juice (e.g., high dose, double strength) have sometimes demonstrated potent inhibition of CYP450 3A4, while other preparations (e.g., low dose, single strength) have typically demonstrated moderate inhibition. Pharmacokinetic interactions involving grapefruit juice are also subject to a high degree of interpatient variability, thus the extent to which a given patient may be affected is difficult to predict.

MANAGEMENT: Patients who regularly consume grapefruit or grapefruit juice should be monitored for adverse effects and altered plasma concentrations of drugs that undergo significant presystemic metabolism by CYP450 3A4. Grapefruit and grapefruit juice should be avoided if an interaction is suspected. Orange juice is not expected to interact with these drugs.

References

  1. Edgar B, Bailey D, Bergstrand R, et al. "Acute effects of drinking grapefruit juice on the pharmacokinetics and dynamics on felodipine and its potential clinical relevance." Eur J Clin Pharmacol 42 (1992): 313-7
  2. Jonkman JH, Sollie FA, Sauter R, Steinijans VW "The influence of caffeine on the steady-state pharmacokinetics of theophylline." Clin Pharmacol Ther 49 (1991): 248-55
  3. Bailey DG, Arnold JM, Munoz C, Spence JD "Grapefruit juice--felodipine interaction: mechanism, predictability, and effect of naringin." Clin Pharmacol Ther 53 (1993): 637-42
  4. Bailey DG, Arnold JMO, Spence JD "Grapefruit juice and drugs - how significant is the interaction." Clin Pharmacokinet 26 (1994): 91-8
  5. Sigusch H, Hippius M, Henschel L, Kaufmann K, Hoffmann A "Influence of grapefruit juice on the pharmacokinetics of a slow release nifedipine formulation." Pharmazie 49 (1994): 522-4
  6. Bailey DG, Arnold JM, Strong HA, Munoz C, Spence JD "Effect of grapefruit juice and naringin on nisoldipine pharmacokinetics." Clin Pharmacol Ther 54 (1993): 589-94
  7. Yamreudeewong W, Henann NE, Fazio A, Lower DL, Cassidy TG "Drug-food interactions in clinical practice." J Fam Pract 40 (1995): 376-84
  8. "Grapefruit juice interactions with drugs." Med Lett Drugs Ther 37 (1995): 73-4
  9. Hukkinen SK, Varhe A, Olkkola KT, Neuvonen PJ "Plasma concentrations of triazolam are increased by concomitant ingestion of grapefruit juice." Clin Pharmacol Ther 58 (1995): 127-31
  10. Min DI, Ku YM, Geraets DR, Lee HC "Effect of grapefruit juice on the pharmacokinetics and pharmacodynamics of quinidine in healthy volunteers." J Clin Pharmacol 36 (1996): 469-76
  11. Majeed A, Kareem A "Effect of grapefruit juice on cyclosporine pharmacokinetics." Pediatr Nephrol 10 (1996): 395
  12. Clifford CP, Adams DA, Murray S, Taylor GW, Wilkins MR, Boobis AR, Davies DS "Pharmacokinetic and cardiac effects of terfenadine after inhibition of its metabolism by grapefruit juice." Br J Clin Pharmacol 42 (1996): p662
  13. Josefsson M, Zackrisson AL, Ahlner J "Effect of grapefruit juice on the pharmacokinetics of amlodipine in healthy volunteers." Eur J Clin Pharmacol 51 (1996): 189-93
  14. Kantola T, Kivisto KT, Neuvonen PJ "Grapefruit juice greatly increases serum concentrations of lovastatin and lovastatin acid." Clin Pharmacol Ther 63 (1998): 397-402
  15. Ozdemir M, Aktan Y, Boydag BS, Cingi MI, Musmul A "Interaction between grapefruit juice and diazepam in humans." Eur J Drug Metab Pharmacokinet 23 (1998): 55-9
  16. Bailey DG, Malcolm J, Arnold O, Spence JD "Grapefruit juice-drug interactions." Br J Clin Pharmacol 46 (1998): 101-10
  17. Bailey DG, Kreeft JH, Munoz C, Freeman DJ, Bend JR "Grapefruit juice felodipine interaction: Effect of naringin and 6',7'-dihydroxybergamottin in humans." Clin Pharmacol Ther 64 (1998): 248-56
  18. Garg SK, Kumar N, Bhargava VK, Prabhakar SK "Effect of grapefruit juice on carbamazepine bioavailability in patients with epilepsy." Clin Pharmacol Ther 64 (1998): 286-8
  19. Lilja JJ, Kivisto KT, Neuvonen PJ "Grapefruit juice-simvastatin interaction: Effect on serum concentrations of simvastatin, simvastatin acid, and HMG-CoA reductase inhibitors." Clin Pharmacol Ther 64 (1998): 477-83
  20. Fuhr U, Maier-Bruggemann A, Blume H, et al. "Grapefruit juice increases oral nimodipine bioavailability." Int J Clin Pharmacol Ther 36 (1998): 126-32
  21. Lilja JJ, Kivisto KT, Neuvonen PJ "Grapefruit juice increases serum concentrations of atorvastatin and has no effect on pravastatin." Clin Pharmacol Ther 66 (1999): 118-27
  22. Eagling VA, Profit L, Back DJ "Inhibition of the CYP3A4-mediated metabolism and P-glycoprotein-mediated transport of the HIV-I protease inhibitor saquinavir by grapefruit juice components." Br J Clin Pharmacol 48 (1999): 543-52
  23. Damkier P, Hansen LL, Brosen K "Effect of diclofenac, disulfiram, itraconazole, grapefruit juice and erythromycin on the pharmacokinetics of quinidine." Br J Clin Pharmacol 48 (1999): 829-38
  24. Lee AJ, Chan WK, Harralson AF, Buffum J, Bui BCC "The effects of grapefruit juice on sertraline metabolism: An in vitro and in vivo study." Clin Ther 21 (1999): 1890-9
  25. Dresser GK, Spence JD, Bailey DG "Pharmacokinetic-pharmacodynamic consequences and clinical relevance of cytochrome P450 3A4 inhibition." Clin Pharmacokinet 38 (2000): 41-57
  26. Gunston GD, Mehta U "Potentially serious drug interactions with grapefruit juice." S Afr Med J 90 (2000): 41
  27. Takanaga H, Ohnishi A, Maatsuo H, et al. "Pharmacokinetic analysis of felodipine-grapefruit juice interaction based on an irreversible enzyme inhibition model." Br J Clin Pharmacol 49 (2000): 49-58
  28. Libersa CC, Brique SA, Motte KB, et al. "Dramatic inhibition of amiodarone metabolism induced by grapefruit juice." Br J Clin Pharmacol 49 (2000): 373-8
  29. Bailey DG, Dresser GR, Kreeft JH, Munoz C, Freeman DJ, Bend JR "Grapefruit-felodipine interaction: Effect of unprocessed fruit and probable active ingredients." Clin Pharmacol Ther 68 (2000): 468-77
  30. Zaidenstein R, Soback S, Gips M, Avni B, Dishi V, Weissgarten Y, Golik A, Scapa E "Effect of grapefruit juice on the pharmacokinetics of losartan and its active metabolite E3174 in healthy volunteers." Ther Drug Monit 23 (2001): 369-73
  31. Sato J, Nakata H, Owada E, Kikuta T, Umetsu M, Ito K "Influence of usual intake of dietary caffeine on single-dose kinetics of theophylline in healthy human subjects." Eur J Clin Pharmacol 44 (1993): 295-8
  32. Flanagan D "Understanding the grapefruit-drug interaction." Gen Dent 53 (2005): 282-5; quiz 286
View all 32 references

Switch to consumer interaction data

Minor

ethinyl estradiol food

Applies to: Ortho-Novum 10 / 11 (ethinyl estradiol / norethindrone)

Coadministration with grapefruit juice may increase the bioavailability of oral estrogens. The proposed mechanism is inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall induced by certain compounds present in grapefruits. In a small, randomized, crossover study, the administration of ethinyl estradiol with grapefruit juice (compared to herbal tea) increased peak plasma drug concentration (Cmax) by 37% and area under the concentration-time curve (AUC) by 28%. Based on these findings, grapefruit juice is unlikely to affect the overall safety profile of ethinyl estradiol. However, as with other drug interactions involving grapefruit juice, the pharmacokinetic alterations are subject to a high degree of interpatient variability. Also, the effect on other estrogens has not been studied.

References

  1. Weber A, Jager R, Borner A, et al. "Can grapefruit juice influence ethinyl estradiol bioavailability?" Contraception 53 (1996): 41-7
  2. Schubert W, Eriksson U, Edgar B, Cullberg G, Hedner T "Flavonoids in grapefruit juice inhibit the in vitro hepatic metabolism of 17B-estradiol." Eur J Drug Metab Pharmacokinet 20 (1995): 219-24

Switch to consumer interaction data

Minor

ethinyl estradiol food

Applies to: Ortho-Novum 10 / 11 (ethinyl estradiol / norethindrone)

The central nervous system effects and blood levels of ethanol may be increased in patients taking oral contraceptives, although data are lacking and reports are contradictory. The mechanism may be due to enzyme inhibition. Consider counseling women about this interaction which is unpredictable.

References

  1. Hobbes J, Boutagy J, Shenfield GM "Interactions between ethanol and oral contraceptive steroids." Clin Pharmacol Ther 38 (1985): 371-80

Switch to consumer interaction data

Minor

norethindrone food

Applies to: Ortho-Novum 10 / 11 (ethinyl estradiol / norethindrone)

The central nervous system effects and blood levels of ethanol may be increased in patients taking oral contraceptives, although data are lacking and reports are contradictory. The mechanism may be due to enzyme inhibition. Consider counseling women about this interaction which is unpredictable.

References

  1. Hobbes J, Boutagy J, Shenfield GM "Interactions between ethanol and oral contraceptive steroids." Clin Pharmacol Ther 38 (1985): 371-80

Switch to consumer interaction data

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Loading...
QR code containing a link to this page

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.