Drug Interactions between Nuedexta and rifapentine
This report displays the potential drug interactions for the following 2 drugs:
- Nuedexta (dextromethorphan/quinidine)
- rifapentine
Interactions between your drugs
quiNIDine dextromethorphan
Applies to: Nuedexta (dextromethorphan / quinidine) and Nuedexta (dextromethorphan / quinidine)
GENERALLY AVOID: Coadministration with potent CYP450 2D6 inhibitors (e.g., quinidine, terbinafine) may significantly increase the plasma concentrations of dextromethorphan in patients who are extensive metabolizers of this isoenzyme (approximately 93% of Caucasians and more than 98% of Asians and individuals of African descent). The proposed mechanism is inhibition of the CYP450 2D6-mediated O-demethylation of dextromethorphan. Studies in humans have shown an increase in systemic exposure of dextromethorphan of up to 43-fold when given concurrently with quinidine. Increased plasma concentrations increase the risk of dextromethorphan-related adverse effects (e.g., agitation, confusion, tremor, insomnia, diarrhea, and respiratory depression) and serotonin syndrome. However, this interaction has also been used clinically, with dextromethorphan in combination with quinidine indicated by some authorities for the treatment of pseudobulbar affect. Data evaluating the impact of this interaction in patients who are poor metabolizers of CYP450 2D6 are limited; most studies include extensive metabolizers of this isoenzyme. It is expected that poor metabolizers would have elevated dextromethorphan levels without concurrent quinidine
MANAGEMENT: The combination of dextromethorphan with potent CYP450 2D6 inhibitors should be generally avoided. Some manufacturers consider the concomitant use of dextromethorphan and selective serotonin reuptake inhibitors contraindicated. If use is considered necessary, the patient should be monitored for signs of dextromethorphan adverse effects (e.g., agitation, confusion, tremor, insomnia, diarrhea, and respiratory depression) and serotonin syndrome, and advised to notify their health care professional if these adverse effects develop or worsen. Dose reduction of dextromethorphan may also be required.
References (6)
- Zhang Y, Britto MR, Valderhaug KL, Wedlund PJ, Smith RA (1992) "Dextromethorphan: enhancing its systemic availability by way of low-dose quinidine-mediated inhibition of cytochrome P4502D6." Clin Pharmacol Ther, 51, p. 647-55
- Schadel M, Wu DA, Otton SV, Kalow W, Sellers EM (1995) "Pharmacokinetics of dextromethorphan and metabolites in humans: influence of the CYP2d6 phenotype and quinidine inhibition." J Clin Psychopharmacol, 15, p. 263-9
- Capon DA, Bochner F, Kerry N, Mikus G, Danz C, Somogyi AA (1996) "The influence of CYP2d6 polymorphism and quinidine on the disposition and antitussive effect of dextromethorphan in humans." Clin Pharmacol Ther, 60, p. 295-307
- Cerner Multum, Inc. "UK Summary of Product Characteristics."
- Cerner Multum, Inc. "Australian Product Information."
- (2010) "Product Information. Nuedexta (dextromethorphan-quinidine)." Avanir Pharmaceuticals, Inc
quiNIDine rifapentine
Applies to: Nuedexta (dextromethorphan / quinidine) and rifapentine
MONITOR: Rifamycins may increase the hepatic metabolism of quinidine by inducing CYP450 3A4 isoenzymes. Serum quinidine levels and quinidine effect may be decreased.
MANAGEMENT: Frequent monitoring of quinidine levels and arrhythmia control is recommended. Increased quinidine dosage may be needed. When a rifamycin is discontinued, enzyme induction and increased hepatic metabolism of quinidine may persist for one week. Patients should be advised to notify their physician if they experience an increase in irregular heartbeats.
References (8)
- Twum-Barima Y, Carruthers SG (1981) "Quinidine-rifampin interaction." N Engl J Med, 304, p. 1466-9
- Venkatesan K (1992) "Pharmacokinetic drug interactions with rifampicin." Clin Pharmacokinet, 22, p. 47-65
- Borcherding SM, Baciewicz AM, Self TH (1992) "Update on rifampin drug interactions." Arch Intern Med, 152, p. 711-6
- Schwartz A, Brown JR (1984) "Quinidine-rifampin interaction." Am Heart J, 107, p. 789-90
- Bussey HI, Merritt GJ, Hill EG (1984) "The influence of rifampin on quinidine and digoxin." Arch Intern Med, 144, p. 1021-3
- Reed R, Schwartz H (1983) "Phenytoin-theophylline-quinidine interactions." N Engl J Med, 308, p. 724-5
- Ahmad D, Mathur P, Ahuja S, Henderson R, Carruthers G (1979) "Rifampicin-quinidine interaction." Br J Dis Chest, 73, p. 409-11
- Strayhorn VA, Baciewicz AM, Self TH (1997) "Update on rifampin drug interactions, III." Arch Intern Med, 157, p. 2453-8
Drug and food interactions
quiNIDine food
Applies to: Nuedexta (dextromethorphan / quinidine)
GENERALLY AVOID: In a small, randomized, crossover study, the administration of quinidine with grapefruit juice (compared to water) to healthy volunteers significantly prolonged the time to reach peak plasma quinidine concentrations and decreased the plasma concentrations of its major metabolite, 3-hydroxyquinidine. These changes were associated pharmacodynamically with both a delay and a reduction in the maximal effect on QTc interval. The proposed mechanism is delay of gastric emptying as well as inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall induced by certain compounds present in grapefruits.
MANAGEMENT: Given the drug's narrow therapeutic index, patients receiving quinidine therapy should avoid the consumption of grapefruits and grapefruit juice to prevent any undue fluctuations in plasma drug levels.
References (4)
- Ace LN, Jaffe JM, Kunka RL (1983) "Effect of food and an antacid on quinidine bioavailability." Biopharm Drug Dispos, 4, p. 183-90
- Min DI, Ku YM, Geraets DR, Lee HC (1996) "Effect of grapefruit juice on the pharmacokinetics and pharmacodynamics of quinidine in healthy volunteers." J Clin Pharmacol, 36, p. 469-76
- Ha HR, Chen J, Leuenberger PM, Freiburghaus AU, Follah F (1995) "In vitro inhibition of midazolam and quinidine metabolism by flavonoids." Eur J Clin Pharmacol, 48, p. 367-71
- Bailey DG, Dresser GR, Kreeft JH, Munoz C, Freeman DJ, Bend JR (2000) "Grapefruit-felodipine interaction: Effect of unprocessed fruit and probable active ingredients." Clin Pharmacol Ther, 68, p. 468-77
dextromethorphan food
Applies to: Nuedexta (dextromethorphan / quinidine)
GENERALLY AVOID: Alcohol may potentiate some of the pharmacologic effects of CNS-active agents. Use in combination may result in additive central nervous system depression and/or impairment of judgment, thinking, and psychomotor skills.
MANAGEMENT: Patients receiving CNS-active agents should be warned of this interaction and advised to avoid or limit consumption of alcohol. Ambulatory patients should be counseled to avoid hazardous activities requiring complete mental alertness and motor coordination until they know how these agents affect them, and to notify their physician if they experience excessive or prolonged CNS effects that interfere with their normal activities.
References (4)
- Warrington SJ, Ankier SI, Turner P (1986) "Evaluation of possible interactions between ethanol and trazodone or amitriptyline." Neuropsychobiology, 15, p. 31-7
- Gilman AG, eds., Nies AS, Rall TW, Taylor P (1990) "Goodman and Gilman's the Pharmacological Basis of Therapeutics." New York, NY: Pergamon Press Inc.
- (2012) "Product Information. Fycompa (perampanel)." Eisai Inc
- (2015) "Product Information. Rexulti (brexpiprazole)." Otsuka American Pharmaceuticals Inc
rifapentine food
Applies to: rifapentine
ADJUST DOSING INTERVAL: Administration with food may increase the oral bioavailability of rifapentine and reduce the incidence of gastrointestinal adverse events. Administration with a high fat meal typically increases rifapentine's maximum concentration (Cmax) and systemic exposure (AUC) by approximately 40% to 50% over that observed when rifapentine is administered under fasting conditions. Rifapentine is often prescribed in combination with isoniazid. When single doses of rifapentine (900 mg) and isoniazid (900 mg) were administered with a low fat, high carbohydrate breakfast, the Cmax and AUC of rifapentine increased by 47% and 51%, respectively. On the other hand, isoniazid's Cmax and AUC decreased by 46% and 23%, respectively.
MANAGEMENT: Products containing oral rifapentine as the sole ingredient recommend administration with a meal to increase bioavailability and reduce the occurrence of gastrointestinal upset, nausea, and/or vomiting. Consultation of product labeling for combination products and/or relevant guidelines may be helpful if rifapentine is combined with a medication that is typically taken on an empty stomach.
References (2)
- (2021) "Product Information. Isoniazid/Rifapentine 300 mg/300 mg (Macleods) (isoniazid-rifapentine)." Imported (India), 2
- (2021) "Product Information. Priftin (rifapentine)." sanofi-aventis
Therapeutic duplication warnings
No warnings were found for your selected drugs.
Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.
See also
Drug Interaction Classification
Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit. | |
Moderately clinically significant. Usually avoid combinations; use it only under special circumstances. | |
Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan. | |
No interaction information available. |
Further information
Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.
Check Interactions
To view an interaction report containing 4 (or more) medications, please sign in or create an account.
Save Interactions List
Sign in to your account to save this drug interaction list.