Drug Interactions between Nuedexta and pralsetinib
This report displays the potential drug interactions for the following 2 drugs:
- Nuedexta (dextromethorphan/quinidine)
- pralsetinib
Interactions between your drugs
quiNIDine dextromethorphan
Applies to: Nuedexta (dextromethorphan / quinidine) and Nuedexta (dextromethorphan / quinidine)
GENERALLY AVOID: Coadministration with potent CYP450 2D6 inhibitors (e.g., quinidine, terbinafine) may significantly increase the plasma concentrations of dextromethorphan in patients who are extensive metabolizers of this isoenzyme (approximately 93% of Caucasians and more than 98% of Asians and individuals of African descent). The proposed mechanism is inhibition of the CYP450 2D6-mediated O-demethylation of dextromethorphan. Studies in humans have shown an increase in systemic exposure of dextromethorphan of up to 43-fold when given concurrently with quinidine. Increased plasma concentrations increase the risk of dextromethorphan-related adverse effects (e.g., agitation, confusion, tremor, insomnia, diarrhea, and respiratory depression) and serotonin syndrome. However, this interaction has also been used clinically, with dextromethorphan in combination with quinidine indicated by some authorities for the treatment of pseudobulbar affect. Data evaluating the impact of this interaction in patients who are poor metabolizers of CYP450 2D6 are limited; most studies include extensive metabolizers of this isoenzyme. It is expected that poor metabolizers would have elevated dextromethorphan levels without concurrent quinidine
MANAGEMENT: The combination of dextromethorphan with potent CYP450 2D6 inhibitors should be generally avoided. Some manufacturers consider the concomitant use of dextromethorphan and selective serotonin reuptake inhibitors contraindicated. If use is considered necessary, the patient should be monitored for signs of dextromethorphan adverse effects (e.g., agitation, confusion, tremor, insomnia, diarrhea, and respiratory depression) and serotonin syndrome, and advised to notify their health care professional if these adverse effects develop or worsen. Dose reduction of dextromethorphan may also be required.
References (6)
- Zhang Y, Britto MR, Valderhaug KL, Wedlund PJ, Smith RA (1992) "Dextromethorphan: enhancing its systemic availability by way of low-dose quinidine-mediated inhibition of cytochrome P4502D6." Clin Pharmacol Ther, 51, p. 647-55
- Schadel M, Wu DA, Otton SV, Kalow W, Sellers EM (1995) "Pharmacokinetics of dextromethorphan and metabolites in humans: influence of the CYP2d6 phenotype and quinidine inhibition." J Clin Psychopharmacol, 15, p. 263-9
- Capon DA, Bochner F, Kerry N, Mikus G, Danz C, Somogyi AA (1996) "The influence of CYP2d6 polymorphism and quinidine on the disposition and antitussive effect of dextromethorphan in humans." Clin Pharmacol Ther, 60, p. 295-307
- Cerner Multum, Inc. "UK Summary of Product Characteristics."
- Cerner Multum, Inc. "Australian Product Information."
- (2010) "Product Information. Nuedexta (dextromethorphan-quinidine)." Avanir Pharmaceuticals, Inc
quiNIDine pralsetinib
Applies to: Nuedexta (dextromethorphan / quinidine) and pralsetinib
MONITOR: Pralsetinib can cause prolongation of the QT interval. Theoretically, coadministration with other agents that can prolong the QT interval may result in additive effects and increased risk of ventricular arrhythmias including torsade de pointes and sudden death. In clinical trials, QT prolongation occurred in 5.1% of 528 patients with non-small cell lung cancer (NSCLC) or other solid tumors. Two patients (0.4%) experienced grade 3 QT prolongation, which resolved in each case. There was no life-threatening or fatal QT prolongation. The QT interval prolongation potential of pralsetinib was assessed in 34 patients with rearranged during transfection (RET) altered solid tumors administered 400 mg once daily, and no mean increase in the corrected QT interval (QTc) greater than 20 ms was detected. In general, the risk of an individual agent or a combination of agents causing ventricular arrhythmia in association with QT prolongation is largely unpredictable but may be increased by certain underlying risk factors such as congenital long QT syndrome, cardiac disease, and electrolyte disturbances (e.g., hypokalemia, hypomagnesemia, hypocalcemia). Moreover, the extent of drug-induced QT prolongation is dependent on the particular drug(s) involved and dosage(s) of the drug(s).
MANAGEMENT: Some authorities recommend caution if pralsetinib is coadministered with other agents known to prolong the QT interval. Patients should be advised to seek prompt medical attention if they experience symptoms that could indicate the occurrence of torsade de pointes such as dizziness, lightheadedness, fainting, palpitation, irregular heart rhythm, shortness of breath, or syncope.
References (4)
- (2023) "Product Information. Gavreto (pralsetinib)." Roche Products Pty Ltd, GAVRETO 20230406
- (2024) "Product Information. Gavreto (pralsetinib)." Genentech
- (2024) "Product Information. Gavreto (pralsetinib)." Roche Products Ltd
- (2024) "Product Information. Gavreto (pralsetinib)." Hoffmann-La Roche Limited
dextromethorphan pralsetinib
Applies to: Nuedexta (dextromethorphan / quinidine) and pralsetinib
MONITOR: Coadministration with pralsetinib may alter the plasma concentrations of drugs that are substrates of CYP450 2C8, 2C9, 3A4, and/or 3A5. In vitro studies indicate that pralsetinib is both an inhibitor as well as an inducer of CYP450 2C8, 2C9, 3A4, and 3A5. Therefore, pralsetinib may decrease clearance via inhibition or increase clearance via induction of these isoenzymes, resulting in increased or decreased plasma concentrations of agents that are metabolized by one or more of these isoenzymes. Clinical and pharmacokinetic data are currently lacking.
MANAGEMENT: Caution is advised if pralsetinib is used concomitantly with drugs that are substrates of CYP450 2C8, 2C9, 3A4, and/or 3A5, particularly sensitive substrates or those with a narrow therapeutic range. Some authorities recommend avoiding coadministration of pralsetinib with CYP450 2C8, 2C9, 3A4, and/or 3A5 substrates for which minimal concentration changes may lead to therapeutic failure or serious toxicities. If coadministration is required, dosage adjustments as well as clinical and laboratory monitoring may be appropriate whenever pralsetinib is added to or withdrawn from therapy. The prescribing information for concomitant medications should be consulted to assess the benefits versus risks of coadministration and for any dosage adjustments that may be required.
References (4)
- (2023) "Product Information. Gavreto (pralsetinib)." Roche Products Pty Ltd, GAVRETO 20230406
- (2023) "Product Information. Gavreto (pralsetinib)." Roche Products Ltd
- (2023) "Product Information. Gavreto (pralsetinib)." Genentech
- (2021) "Product Information. Gavreto (pralsetinib)." Hoffmann-La Roche Limited
Drug and food interactions
pralsetinib food
Applies to: pralsetinib
ADJUST DOSING INTERVAL: Food significantly increases the oral bioavailability of pralsetinib. According to the product labeling, administration of pralsetinib (200 mg) with a high-fat meal (approximately 800 to 1000 calories; 50% to 60% from fat) increased mean pralsetinib peak plasma concentration (Cmax) and systemic exposure (AUC) by 104% and 122%, respectively. The median time to maximum concentration (Tmax) was delayed from 4 hours to 8.5 hours, when compared to the fasted state.
GENERALLY AVOID: The juice of grapefruit and/or Seville oranges may increase the plasma concentrations of pralsetinib. The proposed mechanism is inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall by certain compounds present in grapefruit and Seville oranges. In general, the effect of grapefruit juice is concentration-, dose- and preparation-dependent, and can vary widely among brands. Certain preparations of grapefruit juice (e.g., high dose, double strength) have sometimes demonstrated potent inhibition of CYP450 3A4, while other preparations (e.g., low dose, single strength) have typically demonstrated moderate inhibition. Increased exposure to pralsetinib may increase the risk of adverse effects such as interstitial lung disease/pneumonitis, liver transaminase elevations, hypertension, and hemorrhage. Some clinical trials have also observed prolongation of the QT interval in patients on pralsetinib, though this was not observed in a study of 34 patients with rearranged during transfection (RET)-altered solid tumors on pralsetinib at the recommended dosage.
MANAGEMENT: Pralsetinib should be administered on an empty stomach, with no food intake recommended for at least 2 hours before and at least 1 hour after taking the medication. Patients should avoid consumption of grapefruit, grapefruit juice, Seville oranges, or Seville orange juice during treatment with pralsetinib.
References (4)
- (2023) "Product Information. Gavreto (pralsetinib)." Roche Products Pty Ltd, GAVRETO 20230406
- (2024) "Product Information. Gavreto (pralsetinib)." Genentech
- (2024) "Product Information. Gavreto (pralsetinib)." Roche Products Ltd
- (2024) "Product Information. Gavreto (pralsetinib)." Hoffmann-La Roche Limited
quiNIDine food
Applies to: Nuedexta (dextromethorphan / quinidine)
GENERALLY AVOID: In a small, randomized, crossover study, the administration of quinidine with grapefruit juice (compared to water) to healthy volunteers significantly prolonged the time to reach peak plasma quinidine concentrations and decreased the plasma concentrations of its major metabolite, 3-hydroxyquinidine. These changes were associated pharmacodynamically with both a delay and a reduction in the maximal effect on QTc interval. The proposed mechanism is delay of gastric emptying as well as inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall induced by certain compounds present in grapefruits.
MANAGEMENT: Given the drug's narrow therapeutic index, patients receiving quinidine therapy should avoid the consumption of grapefruits and grapefruit juice to prevent any undue fluctuations in plasma drug levels.
References (4)
- Ace LN, Jaffe JM, Kunka RL (1983) "Effect of food and an antacid on quinidine bioavailability." Biopharm Drug Dispos, 4, p. 183-90
- Min DI, Ku YM, Geraets DR, Lee HC (1996) "Effect of grapefruit juice on the pharmacokinetics and pharmacodynamics of quinidine in healthy volunteers." J Clin Pharmacol, 36, p. 469-76
- Ha HR, Chen J, Leuenberger PM, Freiburghaus AU, Follah F (1995) "In vitro inhibition of midazolam and quinidine metabolism by flavonoids." Eur J Clin Pharmacol, 48, p. 367-71
- Bailey DG, Dresser GR, Kreeft JH, Munoz C, Freeman DJ, Bend JR (2000) "Grapefruit-felodipine interaction: Effect of unprocessed fruit and probable active ingredients." Clin Pharmacol Ther, 68, p. 468-77
dextromethorphan food
Applies to: Nuedexta (dextromethorphan / quinidine)
GENERALLY AVOID: Alcohol may potentiate some of the pharmacologic effects of CNS-active agents. Use in combination may result in additive central nervous system depression and/or impairment of judgment, thinking, and psychomotor skills.
MANAGEMENT: Patients receiving CNS-active agents should be warned of this interaction and advised to avoid or limit consumption of alcohol. Ambulatory patients should be counseled to avoid hazardous activities requiring complete mental alertness and motor coordination until they know how these agents affect them, and to notify their physician if they experience excessive or prolonged CNS effects that interfere with their normal activities.
References (4)
- Warrington SJ, Ankier SI, Turner P (1986) "Evaluation of possible interactions between ethanol and trazodone or amitriptyline." Neuropsychobiology, 15, p. 31-7
- Gilman AG, eds., Nies AS, Rall TW, Taylor P (1990) "Goodman and Gilman's the Pharmacological Basis of Therapeutics." New York, NY: Pergamon Press Inc.
- (2012) "Product Information. Fycompa (perampanel)." Eisai Inc
- (2015) "Product Information. Rexulti (brexpiprazole)." Otsuka American Pharmaceuticals Inc
Therapeutic duplication warnings
No warnings were found for your selected drugs.
Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.
See also
Drug Interaction Classification
Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit. | |
Moderately clinically significant. Usually avoid combinations; use it only under special circumstances. | |
Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan. | |
No interaction information available. |
Further information
Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.
Check Interactions
To view an interaction report containing 4 (or more) medications, please sign in or create an account.
Save Interactions List
Sign in to your account to save this drug interaction list.