Skip to main content

Drug Interactions between Metaglip and OptiPranolol

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Moderate

glipiZIDE metipranolol ophthalmic

Applies to: Metaglip (glipizide / metformin) and OptiPranolol (metipranolol ophthalmic)

MONITOR: Beta-blockers may inhibit some of the normal physiologic response to hypoglycemia. Symptoms of hypoglycemia such as tremor and tachycardia may be absent, making it more difficult for patients to recognize an oncoming episode. In addition, multiple effects on glucose metabolism have been reported, usually with the noncardioselective beta-blockers (e.g., propranolol, pindolol, timolol) but occasionally also with relatively beta-1 selective agents (e.g., atenolol, metoprolol, nebivolol). Specifically, inhibition of catecholamine-mediated glycogenolysis and glucose mobilization in association with beta-blockade can potentiate insulin-induced hypoglycemia in diabetics and delay the recovery of normal blood glucose levels. Prolonged and severe hypoglycemia may occur, although these events have rarely been reported. Significant increases in blood pressure and bradycardia can also occur during hypoglycemia in diabetics treated with insulin and beta-blockers due to antagonism of epinephrine's effect on beta-2 adrenergic receptors, which leads to unopposed alpha-adrenergic effects including vasoconstriction. Other effects reported with various beta-blockers include decreased glucose tolerance and decreased glucose-induced insulin secretion.

MANAGEMENT: In general, cardioselective beta-blockers are considered safer than noncardioselective agents in the treatment of diabetic patients. Nevertheless, caution is advised if they are prescribed to patients treated with insulin or oral antidiabetic agents that can cause hypoglycemia (e.g., insulin secretagogues), as cardioselectivity is not absolute and larger doses of beta-1 selective agents may pose some of the same risks as nonselective agents. Patients should be advised of the need for regular blood glucose monitoring and be aware that certain symptoms of hypoglycemia such as tremor and tachycardia may be masked. However, other symptoms such as headache, dizziness, drowsiness, confusion, nausea, hunger, weakness, and perspiration may be unaffected. The same precautions are applicable in diabetic patients treated with ophthalmic beta-blockers.

References

  1. Shepherd AM, Lin M-S, Keeton TK "Hypoglycemia-induced hypertension in a diabetic patient on metoprolol." Ann Intern Med 94 (1981): 357-8
  2. Micossi P, Pollavini G, Raggi U, et al. "Effects of metoprolol and propranolol on glucose tolerance and insulin secretion in diabetes mellitus." Horm Metab Res 16 (1984): 59-63
  3. Popp DA, Tse TF, Shah SD, et al. "Oral propranolol and metoprolol both impair glucose recovery from insulin-induced hypoglycemia in insulin-dependent diabetes mellitus." Diabetes Care 7 (1984): 243-7
  4. Mann SJ, Krakoff LR "Hypertensive crisis caused by hypoglycemia and propranolol." Arch Intern Med 144 (1984): 2427-8
  5. Groop L, Totterman KJ, Harno K, Gordin A "Influence of beta-blocking drugs on glucose metabolism in patients with non-insulin dependent diabetes mellitus." Acta Med Scand 211 (1982): 7-12
  6. Viberti GC, Keen H, Bloom SR "Beta blockade and diabetes mellitus: effect of oxprenolol and metoprolol on the metabolic, cardiovascular, and hormonal response to insulin-induced hypoglycemia in insulin-dependent diabetics." Metabolism 29 (1980): 873-9
  7. Viberti GC, Keen H, Bloom SR "Beta blockade and diabetes mellitus: effect of oxprenolol and metoprolol on the metabolic, cardiovascular, and hormonal response to insulin-induced hypoglycemia in normal subjects." Metabolism 29 (1980): 866-72
  8. Newman RJ "Comparison of propranolol, metoprolol, and acebutolol on insulin-induced hypoglycaemia." Br Med J 2 (1976): 447-9
  9. Smith U "Beta blockade in diabetes." N Engl J Med 299 (1978): 1467
  10. Zaman R, Kendall MJ, Biggs PI "The effect of acebutolol and propranolol on the hypoglycaemic action of glibenclamide." Br J Clin Pharmacol 13 (1982): 507-12
  11. Munroe WP, Rindone JP, Kershner RM "Systemic side effects associated with the ophthalmic administratiion of timolol." Drug Intell Clin Pharm 19 (1985): 85-9
  12. Ostman J "B-adrenergic blockade and diabetes mellitus." Acta Med Scand 672 (1983): 69-77
  13. Deacon SP, Karunanayake A, Barnett D "Acebutolol, atenolol, and propranolol and metabolic responses to acute hypoglycaemia in diabetes." Br Med J 12 (1977): 1255-7
  14. Pollare T, Lithell H, Selinus I, Berne C "Sensitivity to insulin during treatment with atenolol and metoprolol: a randomised, double blind study of effects on carbohydrate and lipoprotein metabolism in hypertensive patients." BMJ 298 (1989): 1152-7
  15. Sinclair AJ, Davies IB, Warrington SJ "Betaxolol and glucose-insulin relationships: studies in normal subjects taking glibenclamide or metformin." Br J Clin Pharmacol 30 (1990): 699-702
  16. "New Zealand Committee on Adverse Drug Reactions. Ninth Annual Report." N Z Dent J 71 (1975): 28-32
View all 16 references

Switch to consumer interaction data

Moderate

glipiZIDE metFORMIN

Applies to: Metaglip (glipizide / metformin) and Metaglip (glipizide / metformin)

MONITOR: Coadministration of metformin with an insulin secretagogue (e.g., sulfonylurea, meglitinide) or insulin may potentiate the risk of hypoglycemia. Although metformin alone generally does not cause hypoglycemia under normal circumstances of use, the added therapeutic effect when combined with other antidiabetic agents may result in hypoglycemia. The risk is further increased when caloric intake is deficient or when strenuous exercise is not compensated by caloric supplementation.

MANAGEMENT: A lower dosage of the insulin secretagogue or insulin may be required when used with metformin. Blood glucose should be closely monitored, and patients should be educated on the potential signs and symptoms of hypoglycemia (e.g., headache, dizziness, drowsiness, nervousness, confusion, tremor, hunger, weakness, perspiration, palpitation, tachycardia) and appropriate remedial actions to take if it occurs. Patients should also be advised to take precautions to avoid hypoglycemia while driving or operating hazardous machinery.

References

  1. Wiernsperger N, Rapin JR "Metformin-insulin interactions: from organ to cell." Diabetes Metab Rev 11 Suppl (1995): s3-12
  2. Okada S, Ishii K, Hamada H, Tanokuchi S, Ichiki K, Ota Z "Can alpha-glucosidase inhibitors reduce the insulin dosage administered to patients with non-insulin-dependent diabetes mellitus?" J Int Med Res 23 (1995): 487-91

Switch to consumer interaction data

Drug and food interactions

Major

metFORMIN food

Applies to: Metaglip (glipizide / metformin)

GENERALLY AVOID: Alcohol can potentiate the effect of metformin on lactate metabolism and increase the risk of lactic acidosis. In addition, alcohol may cause hypoglycemia or hyperglycemia in patients with diabetes. Although hypoglycemia rarely occurs during treatment with metformin alone, the risk may increase with acute consumption of alcohol. Even modest amounts can lower blood sugar significantly, especially when the alcohol is ingested on an empty stomach or following exercise. The mechanism involves inhibition of both gluconeogenesis as well as the counter-regulatory response to hypoglycemia. Episodes of hypoglycemia may last for 8 to 12 hours after ethanol ingestion. By contrast, chronic alcohol abuse can cause impaired glucose tolerance and hyperglycemia. Moderate alcohol consumption generally does not affect blood glucose levels in patients with well controlled diabetes.

Food may have varying effects on the absorption of metformin from immediate-release versus extended-release formulations. When a single 850 mg dose of immediate-release metformin was administered with food, mean peak plasma concentration (Cmax) and systemic exposure (AUC) decreased by 40% and 25%, respectively, and time to peak plasma concentration (Tmax) increased by 35 minutes compared to administration under fasting conditions. By contrast, administration of extended-release metformin with food increased AUC by 50% without affecting Cmax or Tmax, and both high- and low-fat meals had the same effect. These data may not be applicable to formulations that contain metformin with other oral antidiabetic agents.

MANAGEMENT: Metformin should be taken with meals, and excessive alcohol intake should be avoided during treatment. Diabetes patients in general should avoid consuming alcohol if their blood glucose is not well controlled, or if they have hypertriglyceridemia, neuropathy, or pancreatitis. Alcohol should not be consumed on an empty stomach or following exercise, as it may increase the risk of hypoglycemia. Patients should contact their physician immediately if they experience potential signs and symptoms of lactic acidosis such as malaise, myalgia, respiratory distress, increasing somnolence, and nonspecific abdominal distress (especially after stabilization of metformin therapy, when gastrointestinal symptoms are uncommon). With more marked acidosis, there may also be associated hypothermia, hypotension, and resistant bradyarrhythmias. Metformin should be withdrawn promptly if lactic acidosis is suspected. Serum electrolytes, ketones, blood glucose, blood pH, lactate levels, and blood metformin levels may be useful in establishing a diagnosis. Lactic acidosis should be suspected in any diabetic patient with metabolic acidosis lacking evidence of ketoacidosis (ketonuria and ketonemia).

References

  1. "Product Information. Glucophage (metformin)." Bristol-Myers Squibb PROD (2001):
  2. "Position Statement: evidence-based nutrition principles and recommendations for the treatment and prevention of diabetes related complications. American Diabetes Association." Diabetes Care 25(Suppl 1) (2002): S50-S60

Switch to consumer interaction data

Moderate

glipiZIDE food

Applies to: Metaglip (glipizide / metformin)

GENERALLY AVOID: Alcohol may cause hypoglycemia or hyperglycemia in patients with diabetes. Hypoglycemia most frequently occurs during acute consumption of alcohol. Even modest amounts can lower blood sugar significantly, especially when the alcohol is ingested on an empty stomach or following exercise. The mechanism involves inhibition of both gluconeogenesis as well as the counter-regulatory response to hypoglycemia. Episodes of hypoglycemia may last for 8 to 12 hours after ethanol ingestion. By contrast, chronic alcohol abuse can cause impaired glucose tolerance and hyperglycemia. Moderate alcohol consumption generally does not affect blood glucose levels in patients with well controlled diabetes. A disulfiram-like reaction (e.g., flushing, headache, and nausea) to alcohol has been reported frequently with the use of chlorpropamide and very rarely with other sulfonylureas.

MANAGEMENT: Patients with diabetes should avoid consuming alcohol if their blood glucose is not well controlled, or if they have hypertriglyceridemia, neuropathy, or pancreatitis. Patients with well controlled diabetes should limit their alcohol intake to one drink daily for women and two drinks daily for men (1 drink = 5 oz wine, 12 oz beer, or 1.5 oz distilled spirits) in conjunction with their normal meal plan. Alcohol should not be consumed on an empty stomach or following exercise.

References

  1. Jerntorp P, Almer LO "Chlorpropamide-alcohol flushing in relation to macroangiopathy and peripheral neuropathy in non-insulin dependent diabetes." Acta Med Scand 656 (1981): 33-6
  2. Jerntorp P, Almer LO, Holin H, et al. "Plasma chlorpropamide: a critical factor in chlorpropamide-alcohol flush." Eur J Clin Pharmacol 24 (1983): 237-42
  3. Barnett AH, Spiliopoulos AJ, Pyke DA, et al. "Metabolic studies in chlorpropamide-alcohol flush positive and negative type 2 (non-insulin dependent) diabetic patients with and without retinopathy." Diabetologia 24 (1983): 213-5
  4. Hartling SG, Faber OK, Wegmann ML, Wahlin-Boll E, Melander A "Interaction of ethanol and glipizide in humans." Diabetes Care 10 (1987): 683-6
  5. "Product Information. Diabinese (chlorpropamide)." Pfizer U.S. Pharmaceuticals PROD (2002):
  6. "Product Information. Glucotrol (glipizide)." Pfizer U.S. Pharmaceuticals PROD (2002):
  7. "Product Information. Diabeta (glyburide)." Hoechst Marion-Roussel Inc, Kansas City, MO.
  8. Skillman TG, Feldman JM "The pharmacology of sulfonylureas." Am J Med 70 (1981): 361-72
  9. "Position Statement: evidence-based nutrition principles and recommendations for the treatment and prevention of diabetes related complications. American Diabetes Association." Diabetes Care 25(Suppl 1) (2002): S50-S60
  10. Cerner Multum, Inc. "UK Summary of Product Characteristics." O 0
View all 10 references

Switch to consumer interaction data

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Loading...
QR code containing a link to this page

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.