Skip to main content

Drug Interactions between mercaptopurine and rifampin

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Moderate

rifAMPin mercaptopurine

Applies to: rifampin and mercaptopurine

MONITOR: Coadministration of rifampin with agents known to induce hepatotoxicity may potentiate the risk of liver injury. There are various possible mechanisms related to rifampin-associated hepatotoxicity described in product labeling and medical literature, however no consensus has been made. These include increased mitochondrial oxidative stress, apoptotic liver cell injury (in rodent studies), the development of cholestasis, hepatic lipid accumulation, and elevated toxic metabolites caused by rifampin-mediated induction of cytochrome P450 enzymes. Cases of drug-induced liver injury (including fatal cases) have been reported within the first few days to months following rifampin treatment initiation. Additional data suggests that 1-2% of patients receiving rifampin monotherapy for tuberculosis prophylaxis experience hepatotoxicity. The severity of hepatotoxicity from rifampin ranges from asymptomatic elevations in liver enzymes, jaundice and/or hyperbilirubinemia, and symptomatic self-limiting hepatitis to fulminant liver failure and death. In most cases, liver function recovers upon on discontinuation of rifampin treatment, however, progression to acute liver failure requiring liver transplantation is possible. Known risk factors that may predispose the patient to rifampin related hepatotoxicity include: coadministration with other hepatotoxic agents, alcoholism, existing liver disease, malnutrition, extensive liver tuberculosis, liver adenocarcinoma and biliary tract neoplasm. Clinical data have been reported with concurrent use of rifampin with other antituberculosis agents (e.g. isoniazid, pyrazinamide), acetaminophen, antiretroviral agents (e.g., saquinavir/ritonavir) and halothane. Data with other hepatotoxic agents are limited.

MANAGEMENT: Caution and close clinical monitoring should be considered if rifampin is coadministered with other hepatotoxic medications. In addition, the manufacturer recommends patients with impaired liver function only be given rifampin in cases of necessity and then under strict medical supervision. Some authorities consider rifampin treatment in patients with existing liver injury contraindicated (Canada). In cases where coadministration of rifampin with hepatotoxic agents is required, careful monitoring of liver function, especially ALT and AST, should be done prior to therapy and then every 2 to 4 weeks during therapy. If hepatic damage is suspected, rifampin should be immediately discontinued. Furthermore, if hepatitis is attributed to rifampin in patients with tuberculosis, alternative agents should be considered. Patients should be instructed to contact their physician immediately if they experience symptoms such as itching, weakness, loss of appetite, nausea, vomiting, abdominal pain, yellowing of the eyes or skin or dark urine.

References (7)
  1. Tostmann A, Boeree MJ, Aarnoutse RE, De Lange WCM, Van Der Ven AJAM, Dekhuijzen R (2024) Antituberculosis drug-induced hepatotoxicity: concise up-to-date review https://onlinelibrary.wiley.com/doi/10.1111/j.1440-1746.2007.05207.x
  2. (2022) "Product Information. Rifampin (rifAMPin)." Akorn Inc
  3. (2022) "Product Information. Rifampicin (rifampicin)." Mylan Pharmaceuticals Inc
  4. (2023) "Product Information. Rifadin (rifampicin)." Sanofi
  5. (2024) "Product Information. Rifadin (rifaMPICin)." Sanofi-Aventis Australia Pty Ltd
  6. Zhuang X, Li L, liu t, zhang r, Yang P, Wang X, et al. (2024) Mechanisms of isoniazid and rifampicin-induced liver injury and the effects of natural medicinal ingredients: A review https://www.frontiersin.org/journals/pharmacology/articles/10.3389/fphar.2022.1037814/full
  7. (2019) "Product Information. Rofact (rifampin)." Bausch Health, Canada Inc.

Drug and food interactions

Moderate

rifAMPin food

Applies to: rifampin

GENERALLY AVOID: Concurrent use of rifampin in patients who ingest alcohol daily may result in an increased incidence of hepatotoxicity. The increase in hepatotoxicity may be due to an additive risk as both alcohol and rifampin are individually associated with this adverse reaction. However, the exact mechanism has not been established.

ADJUST DOSING INTERVAL: Administration with food may reduce oral rifampin absorption, increasing the risk of therapeutic failure or resistance. In a randomized, four-period crossover phase I study of 14 healthy male and female volunteers, the pharmacokinetics of single dose rifampin 600 mg were evaluated under fasting conditions and with a high-fat meal. Researchers observed that administration of rifampin with a high-fat meal reduced rifampin peak plasma concentration (Cmax) by 36%, nearly doubled the time to reach peak plasma concentration (Tmax) but reduced overall exposure (AUC) by only 6%.

MANAGEMENT: The manufacturer of oral forms of rifampin recommends administration on an empty stomach, 30 minutes before or 2 hours after meals. Patients should be encouraged to avoid alcohol or strictly limit their intake. Patients who use alcohol and rifampin concurrently or have a history of alcohol use disorder may require additional monitoring of their liver function during treatment with rifampin.

References (6)
  1. (2022) "Product Information. Rifampin (rifAMPin)." Akorn Inc
  2. (2022) "Product Information. Rifampicin (rifampicin)." Mylan Pharmaceuticals Inc
  3. (2023) "Product Information. Rifadin (rifampicin)." Sanofi
  4. (2024) "Product Information. Rifadin (rifaMPICin)." Sanofi-Aventis Australia Pty Ltd
  5. Peloquin CA, Namdar R, Singleton MD, Nix DE (2024) Pharmacokinetics of rifampin under fasting conditions, with food, and with antacids https://pubmed.ncbi.nlm.nih.gov/9925057/
  6. (2019) "Product Information. Rofact (rifampin)." Bausch Health, Canada Inc.
Moderate

mercaptopurine food

Applies to: mercaptopurine

ADJUST DOSING INTERVAL: The oral bioavailability of mercaptopurine (6-MP) is highly variable and may be affected by administration with food or dairy products. The mechanism by which food may impact the absorption of 6-MP has not been fully established, but cow's milk specifically has been found to contain a high concentration of xanthine oxidase, the enzyme responsible for first-pass metabolism of 6-MP to the inactive metabolite 6-thiouric acid. Incubation with cow's milk at 37 C induced a 30% catabolism of 6-MP within 30 minutes in one investigation. However, food or dairy intake with 6-MP in study patients has yielded variable results. In a study conducted in 17 children with acute lymphoblastic leukemia (ALL), oral 6-MP 75 mg/m2 administered 15 minutes after a standardized breakfast including 250 mL of milk resulted in a prolonged Tmax and a lower Cmax and AUC compared with 6-MP administration in the fasting state (mean Tmax: 2.3 hours vs. 1.2 hours; mean Cmax: 0.63 uM vs. 0.98 uM; mean AUC: 105 uM vs. 143 uM, respectively). In a different study, oral 6-MP 31.2 to 81.1 mg/m2 administered to 7 subjects with ALL 15 minutes after a standard breakfast consisting of orange juice, cereal, and toast also trended towards longer Tmax and lower Cmax values compared to 6-MP administration after an overnight fast, although the differences were not statistically significant. Two subjects had blood samples that were all below the limit of detection (20 ng/mL) following administration in the fed state. Likewise, a study of 15 pediatric patients reported non-significant 20% to 22% decreases in the Cmax and AUC of 6-MP when administered after a standardized breakfast containing both milk and cheese compared to administration after fasting, but in contrast to the two earlier studies, Tmax was decreased from 1.8 to 1.1 hours. Another study of 10 children with ALL or non-Hodgkin's lymphoma given an average oral 6-MP dose of 63 mg/m2 revealed substantial interpatient variations in the effect of food intake on 6-MP plasma levels, with Cmax changes ranging from 67% decrease to 81% increase and AUC changes ranging from 53% decrease to 86% increase relative to administration following fasting. Collectively for the group, however, there was no statistically significant difference in mean Tmax, Cmax, or AUC between the fed and fasting states. In this study, patients were fed what they normally ate at home rather than a standardized breakfast, which may have contributed to the inconsistent results. The clinical significance of the data and observations from these studies has not been determined. An interaction with milk was suspected in a four-year-old male with ALL who experienced persistent elevations of peripheral blood counts during maintenance with 6-MP and methotrexate despite increasing doses of 6-MP up to 160% of the calculated dosage for his body surface area (75 mg/m2). Cessation of concomitant milk ingestion allowed for the 6-MP dosage to return to 75 mg/m2 and resulted in control of peripheral blood counts within a week. Other data do not support a clinically relevant interaction with food or dairy products. In a prospective study of 441 patients aged 2 to 20 years receiving 6-MP for ALL maintenance, investigators found no significant association between relapse risk and 6-MP ingestion habits including administration with food versus never with food and administration with milk/dairy versus never with milk/dairy. Among the 56.2% of patients who were considered adherent by the study, there was also no significant association between red cell thioguanine nucleotide (active metabolite) levels and taking 6-MP with food versus without or taking with milk/dairy versus without. However, taking 6-MP with milk/dairy was associated with a 1.9-fold increased risk for nonadherence. These results suggest that taking 6-MP with food or milk/dairy products may not influence clinical outcome but may hinder patient adherence. Poor 6-MP adherence has been associated with an increased risk of childhood ALL relapse.

MANAGEMENT: To minimize variability in absorption and systemic exposure, the timing of mercaptopurine administration should be standardized in relation to food intake (i.e., always with food or always on an empty stomach). Some authorities suggest avoiding concomitant administration with milk or dairy products, although the clinical relevance of their effects on mercaptopurine bioavailability has not been established. As a precaution, patients may consider taking mercaptopurine at least 1 hour before or 2 hours after milk or dairy ingestion if they are able to do so without compromising treatment adherence.

References (11)
  1. lafolie p, bjork o, hayder s, ahstrom l, Peterson C (1989) "Variability of 6-mercaptopurine pharmacokinetics during oral maintenance therapy of children with acute leukemia." Med Oncol Tumor Pharmacother, 6, p. 259-65
  2. (2024) "Product Information. Mercaptopurine (mercaptopurine)." Quinn Pharmaceutical. LLC
  3. (2024) "Product Information. Allmercap (mercaptOPURine)." Link Medical Products Pty Ltd T/A Link Pharmaceuticals
  4. (2024) "Product Information. Xaluprine (mercaptopurine)." Nova Laboratories Ltd
  5. (2023) "Product Information. Mercaptopurine (mercaptopurine)." Sterimax Inc
  6. Landier W, Hageman L, Chen Y, et al. (2017) "Mercaptopurine ingestion habits, red cell thioguanine nucleotide levels, and relapse risk in children with acute lymphoblastic leukemia: a report from the Children's Oncology Group Study AALL03N1." J Clin Oncol, 35, p. 1730-6
  7. rivard ge, Lin KT, Leclerc JM, David M (1989) "Milk could decrease the bioavailability of 6-mercaptopurine." Am J Pediatr Hematol Oncol, 11, p. 402-6
  8. Burton NK, barnett mj, Aherne GW, et al. (1986) "The effect of food on the oral administration of 6-mercaptopurine." Cancer Chemother Pharmacol, 18, p. 90-1
  9. Riccardi R, Balis FM, ferrara p, et al. (1986) "Influence of food intake on bioavailability of oral 6-mercaptopurine in children with acute lymphoblastic leukemia." Pediatr Hematol Oncol, 3, p. 319-24
  10. Lonnerholm G, Kreuger A, Lindstrom B, et al. (1989) "Oral mercaptopurine in childhood leukemia: influence of food intake on bioavailability." Pediatr Hematol Oncol, 6, p. 105-12
  11. Sofianou-Katsoulis A, Khakoo G, Kaczmarski R, et al. (2006) "Reduction in bioavailability of 6-mercaptopurine on simultaneous administration with cow's milk." Pediatr Hematol Oncol, 23, p. 485-7

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.