Skip to main content

Drug Interactions between mephenytoin and mercaptopurine

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Moderate

mercaptopurine mephenytoin

Applies to: mercaptopurine and mephenytoin

MONITOR: Cases have been reported in which patients receiving chemotherapy have experienced markedly reduced plasma phenytoin concentrations and seizures. Other hydantoins may interact with chemotherapy in a similar manner. The mechanism of this interaction has not been clearly established. One study showed that the absorption of phenytoin decreased significantly during chemotherapy.

MANAGEMENT: It may be necessary to increase phenytoin dosage during chemotherapy and to decrease it after or between courses of chemotherapy. Intravenous phenytoin may be less likely to interact with chemotherapy. Careful monitoring of patients for seizure activity is recommended, as is monitoring of plasma phenytoin levels.

References (8)
  1. Jarosinski PF, Moscow JA, Alexander MS, et al. (1988) "Altered phenytoin clearance during intensive chemotherapy for acute lymphoblastic leukemia." J Pediatr, 112, p. 996-9
  2. Bollini P, Riva R, Albani F, Ida, et al. (1983) "Decreased phenytoin level during antineoplastic therapy: a case report." Epilepsia, 24, p. 75-8
  3. Dofferhoff AS, Berendsen HH (1990) "Decreased phenytoin level after carboplatin treatment." Am J Med, 89, p. 247
  4. Fincham RW, Schottelius DD (1979) "Decreased phenytoin levels in antineoplastic therapy." Ther Drug Monit, 1, p. 277-83
  5. Sylvester RK, Lewis FB, Caldwell KC, Lobell M, Perri R, Sawchuk RA (1984) "Impaired phenytoin bioavailability secondary to cisplantin, vinblastine, and bleomycin." Ther Drug Monit, 6, p. 302-5
  6. Neef C, de Voogd-van der Straaten (1988) "An interaction between cytostatic and anticonvulsant drugs." Clin Pharmacol Ther, 43, p. 372-5
  7. Grossman SA, Sheidler VR, Gilbert MR (1989) "Decreased phenytoin levels in patients receiving chemotherapy." Am J Med, 87, p. 505-10
  8. (2001) "Product Information. Oncovin (vincristine)." Lilly, Eli and Company

Drug and food interactions

Moderate

mercaptopurine food

Applies to: mercaptopurine

ADJUST DOSING INTERVAL: The oral bioavailability of mercaptopurine (6-MP) is highly variable and may be affected by administration with food or dairy products. The mechanism by which food may impact the absorption of 6-MP has not been fully established, but cow's milk specifically has been found to contain a high concentration of xanthine oxidase, the enzyme responsible for first-pass metabolism of 6-MP to the inactive metabolite 6-thiouric acid. Incubation with cow's milk at 37 C induced a 30% catabolism of 6-MP within 30 minutes in one investigation. However, food or dairy intake with 6-MP in study patients has yielded variable results. In a study conducted in 17 children with acute lymphoblastic leukemia (ALL), oral 6-MP 75 mg/m2 administered 15 minutes after a standardized breakfast including 250 mL of milk resulted in a prolonged Tmax and a lower Cmax and AUC compared with 6-MP administration in the fasting state (mean Tmax: 2.3 hours vs. 1.2 hours; mean Cmax: 0.63 uM vs. 0.98 uM; mean AUC: 105 uM vs. 143 uM, respectively). In a different study, oral 6-MP 31.2 to 81.1 mg/m2 administered to 7 subjects with ALL 15 minutes after a standard breakfast consisting of orange juice, cereal, and toast also trended towards longer Tmax and lower Cmax values compared to 6-MP administration after an overnight fast, although the differences were not statistically significant. Two subjects had blood samples that were all below the limit of detection (20 ng/mL) following administration in the fed state. Likewise, a study of 15 pediatric patients reported non-significant 20% to 22% decreases in the Cmax and AUC of 6-MP when administered after a standardized breakfast containing both milk and cheese compared to administration after fasting, but in contrast to the two earlier studies, Tmax was decreased from 1.8 to 1.1 hours. Another study of 10 children with ALL or non-Hodgkin's lymphoma given an average oral 6-MP dose of 63 mg/m2 revealed substantial interpatient variations in the effect of food intake on 6-MP plasma levels, with Cmax changes ranging from 67% decrease to 81% increase and AUC changes ranging from 53% decrease to 86% increase relative to administration following fasting. Collectively for the group, however, there was no statistically significant difference in mean Tmax, Cmax, or AUC between the fed and fasting states. In this study, patients were fed what they normally ate at home rather than a standardized breakfast, which may have contributed to the inconsistent results. The clinical significance of the data and observations from these studies has not been determined. An interaction with milk was suspected in a four-year-old male with ALL who experienced persistent elevations of peripheral blood counts during maintenance with 6-MP and methotrexate despite increasing doses of 6-MP up to 160% of the calculated dosage for his body surface area (75 mg/m2). Cessation of concomitant milk ingestion allowed for the 6-MP dosage to return to 75 mg/m2 and resulted in control of peripheral blood counts within a week. Other data do not support a clinically relevant interaction with food or dairy products. In a prospective study of 441 patients aged 2 to 20 years receiving 6-MP for ALL maintenance, investigators found no significant association between relapse risk and 6-MP ingestion habits including administration with food versus never with food and administration with milk/dairy versus never with milk/dairy. Among the 56.2% of patients who were considered adherent by the study, there was also no significant association between red cell thioguanine nucleotide (active metabolite) levels and taking 6-MP with food versus without or taking with milk/dairy versus without. However, taking 6-MP with milk/dairy was associated with a 1.9-fold increased risk for nonadherence. These results suggest that taking 6-MP with food or milk/dairy products may not influence clinical outcome but may hinder patient adherence. Poor 6-MP adherence has been associated with an increased risk of childhood ALL relapse.

MANAGEMENT: To minimize variability in absorption and systemic exposure, the timing of mercaptopurine administration should be standardized in relation to food intake (i.e., always with food or always on an empty stomach). Some authorities suggest avoiding concomitant administration with milk or dairy products, although the clinical relevance of their effects on mercaptopurine bioavailability has not been established. As a precaution, patients may consider taking mercaptopurine at least 1 hour before or 2 hours after milk or dairy ingestion if they are able to do so without compromising treatment adherence.

References (11)
  1. lafolie p, bjork o, hayder s, ahstrom l, Peterson C (1989) "Variability of 6-mercaptopurine pharmacokinetics during oral maintenance therapy of children with acute leukemia." Med Oncol Tumor Pharmacother, 6, p. 259-65
  2. (2024) "Product Information. Mercaptopurine (mercaptopurine)." Quinn Pharmaceutical. LLC
  3. (2024) "Product Information. Allmercap (mercaptOPURine)." Link Medical Products Pty Ltd T/A Link Pharmaceuticals
  4. (2024) "Product Information. Xaluprine (mercaptopurine)." Nova Laboratories Ltd
  5. (2023) "Product Information. Mercaptopurine (mercaptopurine)." Sterimax Inc
  6. Landier W, Hageman L, Chen Y, et al. (2017) "Mercaptopurine ingestion habits, red cell thioguanine nucleotide levels, and relapse risk in children with acute lymphoblastic leukemia: a report from the Children's Oncology Group Study AALL03N1." J Clin Oncol, 35, p. 1730-6
  7. rivard ge, Lin KT, Leclerc JM, David M (1989) "Milk could decrease the bioavailability of 6-mercaptopurine." Am J Pediatr Hematol Oncol, 11, p. 402-6
  8. Burton NK, barnett mj, Aherne GW, et al. (1986) "The effect of food on the oral administration of 6-mercaptopurine." Cancer Chemother Pharmacol, 18, p. 90-1
  9. Riccardi R, Balis FM, ferrara p, et al. (1986) "Influence of food intake on bioavailability of oral 6-mercaptopurine in children with acute lymphoblastic leukemia." Pediatr Hematol Oncol, 3, p. 319-24
  10. Lonnerholm G, Kreuger A, Lindstrom B, et al. (1989) "Oral mercaptopurine in childhood leukemia: influence of food intake on bioavailability." Pediatr Hematol Oncol, 6, p. 105-12
  11. Sofianou-Katsoulis A, Khakoo G, Kaczmarski R, et al. (2006) "Reduction in bioavailability of 6-mercaptopurine on simultaneous administration with cow's milk." Pediatr Hematol Oncol, 23, p. 485-7
Moderate

mephenytoin food

Applies to: mephenytoin

ADJUST DOSING INTERVAL: Phenytoin bioavailability may decrease to subtherapeutic levels when the suspension is given concomitantly with enteral feedings. The mechanism may be related to phenytoin binding to substances in the enteral formula (e.g., calcium, protein) and/or binding to the tube lumen. Data have been conflicting and some studies have reported no changes in phenytoin levels, while others have reported significant reductions.

MONITOR: Acute consumption of alcohol may increase plasma phenytoin levels. Chronic consumption of alcohol may decrease plasma phenytoin levels. The mechanism of this interaction is related to induction of phenytoin metabolism by ethanol during chronic administration. Other hydantoin derivatives may be similarly affected by ethanol.

MANAGEMENT: Some experts have recommended interrupting the feeding for 2 hours before and after the phenytoin dose, giving the phenytoin suspension diluted in water, and flushing the tube with water after administration; however, this method may not entirely avoid the interaction and is not always clinically feasible. Patients should be closely monitored for clinical and laboratory evidence of altered phenytoin efficacy and levels upon initiation and discontinuation of enteral feedings. Dosage adjustments or intravenous administration may be required until therapeutic serum levels are obtained. In addition, patients receiving phenytoin therapy should be warned about the interaction between phenytoin and ethanol and they should be advised to notify their physician if they experience worsening of seizure control or symptoms of toxicity, including drowsiness, visual disturbances, change in mental status, nausea, or ataxia.

References (16)
  1. Sandor P, Sellers EM, Dumbrell M, Khouw V (1981) "Effect of short- and long-term alcohol use on phenytoin kinetics in chronic alcoholics." Clin Pharmacol Ther, 30, p. 390-7
  2. Holtz L, Milton J, Sturek JK (1987) "Compatibility of medications with enteral feedings." JPEN J Parenter Enteral Nutr, 11, p. 183-6
  3. Sellers EM, Holloway MR (1978) "Drug kinetics and alcohol ingestion." Clin Pharmacokinet, 3, p. 440-52
  4. (2001) "Product Information. Dilantin (phenytoin)." Parke-Davis
  5. Doak KK, Haas CE, Dunnigan KJ, et al. (1998) "Bioavailability of phenytoin acid and phenytoin sodium with enteral feedings." Pharmacotherapy, 18, p. 637-45
  6. Rodman DP, Stevenson TL, Ray TR (1995) "Phenytoin malabsorption after jejunostomy tube delivery." Pharmacotherapy, 15, p. 801-5
  7. Au Yeung SC, Ensom MH (2000) "Phenytoin and enteral feedings: does evidence support an interaction?" Ann Pharmacother, 34, p. 896-905
  8. Ozuna J, Friel P (1984) "Effect of enteral tube feeding on serum phenytoin levels." J Neurosurg Nurs, 16, p. 289-91
  9. Faraji B, Yu PP (1998) "Serum phenytoin levels of patients on gastrostomy tube feeding." J Neurosci Nurs, 30, p. 55-9
  10. Marvel ME, Bertino JS (1991) "Comparative effects of an elemental and a complex enteral feeding formulation on the absorption of phenytoin suspension." JPEN J Parenter Enteral Nutr, 15, p. 316-8
  11. Fleisher D, Sheth N, Kou JH (1990) "Phenytoin interaction with enteral feedings administered through nasogastric tubes." JPEN J Parenter Enteral Nutr, 14, p. 513-6
  12. Haley CJ, Nelson J (1989) "Phenytoin-enteral feeding interaction." DICP, 23, p. 796-8
  13. Guidry JR, Eastwood TF, Curry SC (1989) "Phenytoin absorption in volunteers receiving selected enteral feedings." West J Med, 150, p. 659-61
  14. Krueger KA, Garnett WR, Comstock TJ, Fitzsimmons WE, Karnes HT, Pellock JM (1987) "Effect of two administration schedules of an enteral nutrient formula on phenytoin bioavailability." Epilepsia, 28, p. 706-12
  15. Cerner Multum, Inc. "UK Summary of Product Characteristics."
  16. Cerner Multum, Inc. "Australian Product Information."

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.