Skip to main content

Drug Interactions between measles virus vaccine / rubella virus vaccine and zanubrutinib

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Major

measles virus vaccine zanubrutinib

Applies to: measles virus vaccine / rubella virus vaccine and zanubrutinib

CONTRAINDICATED: The administration of live, attenuated viral or bacterial vaccines during immunosuppressant or intense antineoplastic therapy may be associated with a risk of disseminated infection due to enhanced replication of vaccine virus or bacteria in the presence of diminished immune competence. Patients may be immunosuppressed if they have recently received or are receiving alkylating agents, antimetabolites, radiation, some antirheumatic agents, high dosages of corticosteroids or adrenocorticotropic agents (e.g., greater than or equal to 2 mg/kg/day or 20 mg/day of prednisone or equivalent for 14 consecutive days or more), or long-term topical or inhaled corticosteroids. These patients may also have increased adverse reactions and decreased or suboptimal immunologic response to vaccines.

MANAGEMENT: In general, live attenuated vaccines should not be used in patients receiving immunosuppressive therapy or cancer chemotherapy. Vaccination should be deferred until after such therapy is discontinued and immune function has been restored, usually 4 to 12 weeks after stopping immunosuppressive therapy. A longer waiting period may be necessary following treatment with agents that have a prolonged elimination half-life (e.g., leflunomide, teriflunomide). In most situations, patients who have recently been vaccinated with a live vaccine should not initiate treatment with immunosuppressive therapy for at least 2 weeks (possibly longer in some cases). Current local immunization guidelines and prescribing information for individual vaccines and immunosuppressive agents should be consulted for more specific recommendations. Vaccines may generally be administered to patients receiving corticosteroids as replacement therapy (e.g., for Addison's disease).

References

  1. (2022) "Product Information. Meruvax II (rubella virus vaccine)." Merck & Co., Inc
  2. (2022) "Product Information. Attenuvax (measles virus vaccine)." Merck & Co., Inc
  3. (2001) "Product Information. YF-Vax (yellow fever vaccine)." sanofi pasteur
  4. Braunwald E, Hauser SL, Kasper DL, Fauci AS, Isselbacher KJ, Longo DL, Martin JB, eds., Wilson JD (1998) "Harrison's Principles of Internal Medicine." New York, NY: McGraw-Hill Health Professionals Division
  5. CDC. Centers for Disease Control and Prevention/ (1993) "Recommendations of the advisory committtee on immunization practices (ACIP): use of vaccines and immune globulins in persons with altered immunocompetence." MMWR Morb Mortal Wkly Rep, 42(RR-04), p. 1-18
  6. (2002) "Product Information. M-M-R II (measles/mumps/rubella virus vaccine)." Merck & Co., Inc
  7. Charkoudian LD, Kaiser GM, Steinmetz RL, Srivastava SK (2011) "Acute retinal necrosis after herpes zoster vaccination." Arch Ophthalmol, 129, p. 1495-7
  8. Kriner P, Lopez K, Leung J, Harpaz R, Bialek SR (2014) "Notes from the field: varicella-associated death of a vaccinated child with leukemia - California, 2012." MMWR Morb Mortal Wkly Rep, 63, p. 161
  9. CDC Centers for Disease Control and Prevention (2019) General Best Practice Guidelines for Immunization: Altered Immunocompetence. https://www.cdc.gov/vaccines/hcp/acip-recs/general-recs/immunocompetence.pdf
  10. (2022) "Product Information. DENGVAXIA (dengue vaccine)." sanofi pasteur
  11. Advisory Committee on Immunization Practices: Centers for Disease Control and Prevention General Best Practice Guidelines for Immunization: Contraindications and Precautions: https://www.cdc.gov/vaccines/hcp/acip-recs/general-recs/contraindications.html
View all 11 references

Switch to consumer interaction data

Major

rubella virus vaccine zanubrutinib

Applies to: measles virus vaccine / rubella virus vaccine and zanubrutinib

CONTRAINDICATED: The administration of live, attenuated viral or bacterial vaccines during immunosuppressant or intense antineoplastic therapy may be associated with a risk of disseminated infection due to enhanced replication of vaccine virus or bacteria in the presence of diminished immune competence. Patients may be immunosuppressed if they have recently received or are receiving alkylating agents, antimetabolites, radiation, some antirheumatic agents, high dosages of corticosteroids or adrenocorticotropic agents (e.g., greater than or equal to 2 mg/kg/day or 20 mg/day of prednisone or equivalent for 14 consecutive days or more), or long-term topical or inhaled corticosteroids. These patients may also have increased adverse reactions and decreased or suboptimal immunologic response to vaccines.

MANAGEMENT: In general, live attenuated vaccines should not be used in patients receiving immunosuppressive therapy or cancer chemotherapy. Vaccination should be deferred until after such therapy is discontinued and immune function has been restored, usually 4 to 12 weeks after stopping immunosuppressive therapy. A longer waiting period may be necessary following treatment with agents that have a prolonged elimination half-life (e.g., leflunomide, teriflunomide). In most situations, patients who have recently been vaccinated with a live vaccine should not initiate treatment with immunosuppressive therapy for at least 2 weeks (possibly longer in some cases). Current local immunization guidelines and prescribing information for individual vaccines and immunosuppressive agents should be consulted for more specific recommendations. Vaccines may generally be administered to patients receiving corticosteroids as replacement therapy (e.g., for Addison's disease).

References

  1. (2022) "Product Information. Meruvax II (rubella virus vaccine)." Merck & Co., Inc
  2. (2022) "Product Information. Attenuvax (measles virus vaccine)." Merck & Co., Inc
  3. (2001) "Product Information. YF-Vax (yellow fever vaccine)." sanofi pasteur
  4. Braunwald E, Hauser SL, Kasper DL, Fauci AS, Isselbacher KJ, Longo DL, Martin JB, eds., Wilson JD (1998) "Harrison's Principles of Internal Medicine." New York, NY: McGraw-Hill Health Professionals Division
  5. CDC. Centers for Disease Control and Prevention/ (1993) "Recommendations of the advisory committtee on immunization practices (ACIP): use of vaccines and immune globulins in persons with altered immunocompetence." MMWR Morb Mortal Wkly Rep, 42(RR-04), p. 1-18
  6. (2002) "Product Information. M-M-R II (measles/mumps/rubella virus vaccine)." Merck & Co., Inc
  7. Charkoudian LD, Kaiser GM, Steinmetz RL, Srivastava SK (2011) "Acute retinal necrosis after herpes zoster vaccination." Arch Ophthalmol, 129, p. 1495-7
  8. Kriner P, Lopez K, Leung J, Harpaz R, Bialek SR (2014) "Notes from the field: varicella-associated death of a vaccinated child with leukemia - California, 2012." MMWR Morb Mortal Wkly Rep, 63, p. 161
  9. CDC Centers for Disease Control and Prevention (2019) General Best Practice Guidelines for Immunization: Altered Immunocompetence. https://www.cdc.gov/vaccines/hcp/acip-recs/general-recs/immunocompetence.pdf
  10. (2022) "Product Information. DENGVAXIA (dengue vaccine)." sanofi pasteur
  11. Advisory Committee on Immunization Practices: Centers for Disease Control and Prevention General Best Practice Guidelines for Immunization: Contraindications and Precautions: https://www.cdc.gov/vaccines/hcp/acip-recs/general-recs/contraindications.html
View all 11 references

Switch to consumer interaction data

Drug and food interactions

Major

zanubrutinib food

Applies to: zanubrutinib

GENERALLY AVOID: Grapefruit and/or grapefruit juice may increase the plasma concentrations of zanubrutinib. The proposed mechanism is inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall by certain compounds present in grapefruit. Inhibition of hepatic CYP450 3A4 may also contribute. The interaction has not been studied with grapefruit juice, but has been reported for other CYP450 3A4 inhibitors. When zanubrutinib was administered with the potent CYP450 3A4 inhibitor itraconazole (200 mg once daily) in clinical study subjects, zanubrutinib peak plasma concentration (Cmax) and systemic exposure (AUC) increased by 157% and 278%, respectively. Data derived from pharmacokinetic modeling have also been reported for several additional CYP450 3A4 inhibitors. For example, the potent CYP450 3A4 inhibitor clarithromycin (250 mg twice daily) is predicted to increase zanubrutinib Cmax and AUC by 175% and 183%, respectively. The moderate CYP450 3A4 inhibitor diltiazem (60 mg three times daily) is predicted to increase zanubrutinib Cmax and AUC by 151% and 157%, respectively. Another moderate CYP450 3A4 inhibitor, erythromycin (500 mg four times daily), is predicted to increase zanubrutinib Cmax and AUC by 284% and 317%, respectively. Likewise, fluconazole 200 mg once daily is predicted to increase zanubrutinib Cmax and AUC by 179% and 177%, respectively; while fluconazole 400 mg once daily is predicted to increase zanubrutinib Cmax and AUC by 270% and 284%, respectively. In general, the effects of grapefruit products are concentration-, dose- and preparation-dependent, and can vary widely among brands. Certain preparations of grapefruit (e.g., high dose, double strength) have sometimes demonstrated potent inhibition of CYP450 3A4, while other preparations (e.g., low dose, single strength) have typically demonstrated moderate inhibition. Increased zanubrutinib exposure may potentiate the risk of toxicities such as hemorrhage, infection, cytopenias, malignancies, and serious cardiac arrhythmias (primarily atrial fibrillation and atrial flutter).

Food does not affect the oral bioavailability of zanubrutinib. No clinically significant differences in zanubrutinib Cmax or AUC were observed following administration of a high-fat meal (approximately 1000 calories; 50% from fat) in healthy subjects.

MANAGEMENT: Zanubrutinib may be administered with or without food. Patients should avoid consumption of grapefruit, grapefruit juice, Seville oranges, and Seville orange juice during treatment with zanubrutinib.

References

  1. (2023) "Product Information. Brukinsa (zanubrutinib)." BeiGene USA, Inc, SUPPL-7
  2. (2022) "Product Information. Brukinsa (zanubrutinib)." Innomar Strategies Inc.
  3. (2022) "Product Information. Brukinsa (zanubrutinib)." Beigene Aus Pty Ltd

Switch to consumer interaction data

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Loading...
QR code containing a link to this page

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.