Drug Interactions between mavacamten and metformin / repaglinide
This report displays the potential drug interactions for the following 2 drugs:
- mavacamten
- metformin/repaglinide
Interactions between your drugs
metFORMIN repaglinide
Applies to: metformin / repaglinide and metformin / repaglinide
MONITOR: Coadministration of metformin with an insulin secretagogue (e.g., sulfonylurea, meglitinide) or insulin may potentiate the risk of hypoglycemia. Although metformin alone generally does not cause hypoglycemia under normal circumstances of use, the added therapeutic effect when combined with other antidiabetic agents may result in hypoglycemia. The risk is further increased when caloric intake is deficient or when strenuous exercise is not compensated by caloric supplementation.
MANAGEMENT: A lower dosage of the insulin secretagogue or insulin may be required when used with metformin. Blood glucose should be closely monitored, and patients should be educated on the potential signs and symptoms of hypoglycemia (e.g., headache, dizziness, drowsiness, nervousness, confusion, tremor, hunger, weakness, perspiration, palpitation, tachycardia) and appropriate remedial actions to take if it occurs. Patients should also be advised to take precautions to avoid hypoglycemia while driving or operating hazardous machinery.
References (2)
- Wiernsperger N, Rapin JR (1995) "Metformin-insulin interactions: from organ to cell." Diabetes Metab Rev, 11 Suppl, s3-12
- Okada S, Ishii K, Hamada H, Tanokuchi S, Ichiki K, Ota Z (1995) "Can alpha-glucosidase inhibitors reduce the insulin dosage administered to patients with non-insulin-dependent diabetes mellitus?" J Int Med Res, 23, p. 487-91
repaglinide mavacamten
Applies to: metformin / repaglinide and mavacamten
MONITOR: Coadministration with mavacamten may decrease the plasma concentrations of drugs that are primarily metabolized by CYP450 3A4, 2C9, and/or 2C19. The proposed mechanism is accelerated clearance due to induction of these isoenzymes by mavacamten. The interaction may be particularly important for sensitive substrates or those that demonstrate a narrow therapeutic index. When midazolam, a probe substrate for CYP450 3A4, was coadministered with a 16-day course of mavacamten (25 mg on days 1 and 2, followed by 15 mg for 14 days) in healthy CYP450 2C19 normal metabolizers, midazolam peak plasma concentration (Cmax) decreased by 7% and systemic exposure (AUC) decreased by 13%. Following coadministration of mavacamten once daily in patients with obstructive hypertrophic cardiomyopathy (HCM), midazolam Cmax and AUC are predicted to decrease by up to 24% and 45%, respectively. Additionally, concomitant use of mavacamten once daily in HCM patients is predicted to decrease the Cmax and AUC of repaglinide, a CYP450 2C8 and 3A4 substrate, by up to 19% and 27%; the Cmax and AUC of tolbutamide, a CYP450 2C9 substrate, by up to 23% and 54%, and the Cmax and AUC of omeprazole, a CYP450 2C19 substrate, by up to 17% and 48%, respectively; depending on the dose of mavacamten and CYP450 2C19 phenotype.
MANAGEMENT: Caution is advised when mavacamten is used concomitantly with drugs that are substrates of CYP450 3A4, 2C9 and/or 2C19, particularly sensitive substrates or those with a narrow therapeutic range. Dosage adjustments as well as clinical and laboratory monitoring may be appropriate for some drugs whenever mavacamten is added to or withdrawn from therapy. The prescribing information for concomitant medications should be consulted to assess the benefits versus risks of coadministration of a CYP450 inducer like mavacamten and for any dosage adjustments that may be required.
References (3)
- (2025) "Product Information. Camzyos (mavacamten)." MyoKardia Inc
- (2024) "Product Information. Camzyos (mavacamten)." Bristol-Myers Squibb Australia Pty Ltd
- (2024) "Product Information. Camzyos (mavacamten)." Bristol-Myers Squibb Canada Inc
Drug and food interactions
metFORMIN food
Applies to: metformin / repaglinide
GENERALLY AVOID: Alcohol can potentiate the effect of metformin on lactate metabolism and increase the risk of lactic acidosis. In addition, alcohol may cause hypoglycemia or hyperglycemia in patients with diabetes. Although hypoglycemia rarely occurs during treatment with metformin alone, the risk may increase with acute consumption of alcohol. Even modest amounts can lower blood sugar significantly, especially when the alcohol is ingested on an empty stomach or following exercise. The mechanism involves inhibition of both gluconeogenesis as well as the counter-regulatory response to hypoglycemia. Episodes of hypoglycemia may last for 8 to 12 hours after ethanol ingestion. By contrast, chronic alcohol abuse can cause impaired glucose tolerance and hyperglycemia. Moderate alcohol consumption generally does not affect blood glucose levels in patients with well controlled diabetes.
Food may have varying effects on the absorption of metformin from immediate-release versus extended-release formulations. When a single 850 mg dose of immediate-release metformin was administered with food, mean peak plasma concentration (Cmax) and systemic exposure (AUC) decreased by 40% and 25%, respectively, and time to peak plasma concentration (Tmax) increased by 35 minutes compared to administration under fasting conditions. By contrast, administration of extended-release metformin with food increased AUC by 50% without affecting Cmax or Tmax, and both high- and low-fat meals had the same effect. These data may not be applicable to formulations that contain metformin with other oral antidiabetic agents.
MANAGEMENT: Metformin should be taken with meals, and excessive alcohol intake should be avoided during treatment. Diabetes patients in general should avoid consuming alcohol if their blood glucose is not well controlled, or if they have hypertriglyceridemia, neuropathy, or pancreatitis. Alcohol should not be consumed on an empty stomach or following exercise, as it may increase the risk of hypoglycemia. Patients should contact their physician immediately if they experience potential signs and symptoms of lactic acidosis such as malaise, myalgia, respiratory distress, increasing somnolence, and nonspecific abdominal distress (especially after stabilization of metformin therapy, when gastrointestinal symptoms are uncommon). With more marked acidosis, there may also be associated hypothermia, hypotension, and resistant bradyarrhythmias. Metformin should be withdrawn promptly if lactic acidosis is suspected. Serum electrolytes, ketones, blood glucose, blood pH, lactate levels, and blood metformin levels may be useful in establishing a diagnosis. Lactic acidosis should be suspected in any diabetic patient with metabolic acidosis lacking evidence of ketoacidosis (ketonuria and ketonemia).
References (2)
- (2001) "Product Information. Glucophage (metformin)." Bristol-Myers Squibb
- (2002) "Position Statement: evidence-based nutrition principles and recommendations for the treatment and prevention of diabetes related complications. American Diabetes Association." Diabetes Care, 25(Suppl 1), S50-S60
mavacamten food
Applies to: mavacamten
GENERALLY AVOID: Grapefruit juice may increase the plasma concentrations of mavacamten. The proposed mechanism is inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall by certain compounds present in grapefruit. Inhibition of hepatic CYP450 3A4 may also contribute. The interaction has not been studied with grapefruit juice, but has been reported for other CYP450 3A4 inhibitors. According to the prescribing information, mavacamten is primarily metabolized by CYP450 2C19 (74%) and to a lesser extent by CYP450 3A4 (18%) and 2C9 (8%). When mavacamten (25 mg) was coadministered with the moderate CYP450 3A4 inhibitor verapamil (sustained-release 240 mg) in intermediate and normal metabolizers of CYP450 2C19, mavacamten systemic exposure (AUC) increased by 15% and peak plasma concentration (Cmax) increased by 52%. Concomitant use of mavacamten with diltiazem, another moderate CYP450 3A4 inhibitor, in CYP450 2C19 poor metabolizers is predicted to increase mavacamten AUC and Cmax by up to 55% and 42%, respectively. Concomitant use of mavacamten (15 mg) with the potent CYP450 3A4 inhibitor ketoconazole (400 mg once daily) is predicted to increase mavacamten AUC and Cmax by up to 130% and 90%, respectively. Because mavacamten reduces systolic contraction and left ventricular ejection fraction, increased exposure may potentiate the risk of heart failure. In general, the effect of grapefruit juice is concentration-, dose- and preparation-dependent, and can vary widely among brands. Certain preparations of grapefruit juice (e.g., high dose, double strength) have sometimes demonstrated potent inhibition of CYP450 3A4, while other preparations (e.g., low dose, single strength) have typically demonstrated moderate inhibition.
Food does not affect the extent of absorption of mavacamten. No clinically significant difference in mavacamten exposure was observed following administration with a high-fat meal. However, the time to reach peak plasma concentration (Tmax) was increased by 4 hours.
MANAGEMENT: Mavacamten may be administered with or without food. Patients should avoid consumption of grapefruit and grapefruit juice during treatment with mavacamten.
References (2)
- (2022) "Product Information. Camzyos (mavacamten)." MyoKardia Inc
- (2023) "Product Information. Camzyos (mavacamten)." (Obsolete) Bristol-Myers Squibb Australia Pty Ltd, 2
repaglinide food
Applies to: metformin / repaglinide
MONITOR: Grapefruit juice may increase the plasma concentrations of orally administered drugs that are substrates of the CYP450 3A4 isoenzyme. The proposed mechanism is inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall by certain compounds present in grapefruit. Because grapefruit juice inhibits primarily intestinal rather than hepatic CYP450 3A4, the magnitude of interaction is greatest for those drugs that undergo significant presystemic metabolism by CYP450 3A4 (i.e., drugs with low oral bioavailability). In general, the effect of grapefruit juice is concentration-, dose- and preparation-dependent, and can vary widely among brands. Certain preparations of grapefruit juice (e.g., high dose, double strength) have sometimes demonstrated potent inhibition of CYP450 3A4, while other preparations (e.g., low dose, single strength) have typically demonstrated moderate inhibition. Pharmacokinetic interactions involving grapefruit juice are also subject to a high degree of interpatient variability, thus the extent to which a given patient may be affected is difficult to predict.
MANAGEMENT: Patients who regularly consume grapefruit or grapefruit juice should be monitored for adverse effects and altered plasma concentrations of drugs that undergo significant presystemic metabolism by CYP450 3A4. Grapefruit and grapefruit juice should be avoided if an interaction is suspected. Orange juice is not expected to interact with these drugs.
References (32)
- Edgar B, Bailey D, Bergstrand R, et al. (1992) "Acute effects of drinking grapefruit juice on the pharmacokinetics and dynamics on felodipine and its potential clinical relevance." Eur J Clin Pharmacol, 42, p. 313-7
- Jonkman JH, Sollie FA, Sauter R, Steinijans VW (1991) "The influence of caffeine on the steady-state pharmacokinetics of theophylline." Clin Pharmacol Ther, 49, p. 248-55
- Bailey DG, Arnold JM, Munoz C, Spence JD (1993) "Grapefruit juice--felodipine interaction: mechanism, predictability, and effect of naringin." Clin Pharmacol Ther, 53, p. 637-42
- Bailey DG, Arnold JMO, Spence JD (1994) "Grapefruit juice and drugs - how significant is the interaction." Clin Pharmacokinet, 26, p. 91-8
- Sigusch H, Hippius M, Henschel L, Kaufmann K, Hoffmann A (1994) "Influence of grapefruit juice on the pharmacokinetics of a slow release nifedipine formulation." Pharmazie, 49, p. 522-4
- Bailey DG, Arnold JM, Strong HA, Munoz C, Spence JD (1993) "Effect of grapefruit juice and naringin on nisoldipine pharmacokinetics." Clin Pharmacol Ther, 54, p. 589-94
- Yamreudeewong W, Henann NE, Fazio A, Lower DL, Cassidy TG (1995) "Drug-food interactions in clinical practice." J Fam Pract, 40, p. 376-84
- (1995) "Grapefruit juice interactions with drugs." Med Lett Drugs Ther, 37, p. 73-4
- Hukkinen SK, Varhe A, Olkkola KT, Neuvonen PJ (1995) "Plasma concentrations of triazolam are increased by concomitant ingestion of grapefruit juice." Clin Pharmacol Ther, 58, p. 127-31
- Min DI, Ku YM, Geraets DR, Lee HC (1996) "Effect of grapefruit juice on the pharmacokinetics and pharmacodynamics of quinidine in healthy volunteers." J Clin Pharmacol, 36, p. 469-76
- Majeed A, Kareem A (1996) "Effect of grapefruit juice on cyclosporine pharmacokinetics." Pediatr Nephrol, 10, p. 395
- Clifford CP, Adams DA, Murray S, Taylor GW, Wilkins MR, Boobis AR, Davies DS (1996) "Pharmacokinetic and cardiac effects of terfenadine after inhibition of its metabolism by grapefruit juice." Br J Clin Pharmacol, 42, p662
- Josefsson M, Zackrisson AL, Ahlner J (1996) "Effect of grapefruit juice on the pharmacokinetics of amlodipine in healthy volunteers." Eur J Clin Pharmacol, 51, p. 189-93
- Kantola T, Kivisto KT, Neuvonen PJ (1998) "Grapefruit juice greatly increases serum concentrations of lovastatin and lovastatin acid." Clin Pharmacol Ther, 63, p. 397-402
- Ozdemir M, Aktan Y, Boydag BS, Cingi MI, Musmul A (1998) "Interaction between grapefruit juice and diazepam in humans." Eur J Drug Metab Pharmacokinet, 23, p. 55-9
- Bailey DG, Malcolm J, Arnold O, Spence JD (1998) "Grapefruit juice-drug interactions." Br J Clin Pharmacol, 46, p. 101-10
- Bailey DG, Kreeft JH, Munoz C, Freeman DJ, Bend JR (1998) "Grapefruit juice felodipine interaction: Effect of naringin and 6',7'-dihydroxybergamottin in humans." Clin Pharmacol Ther, 64, p. 248-56
- Garg SK, Kumar N, Bhargava VK, Prabhakar SK (1998) "Effect of grapefruit juice on carbamazepine bioavailability in patients with epilepsy." Clin Pharmacol Ther, 64, p. 286-8
- Lilja JJ, Kivisto KT, Neuvonen PJ (1998) "Grapefruit juice-simvastatin interaction: Effect on serum concentrations of simvastatin, simvastatin acid, and HMG-CoA reductase inhibitors." Clin Pharmacol Ther, 64, p. 477-83
- Fuhr U, Maier-Bruggemann A, Blume H, et al. (1998) "Grapefruit juice increases oral nimodipine bioavailability." Int J Clin Pharmacol Ther, 36, p. 126-32
- Lilja JJ, Kivisto KT, Neuvonen PJ (1999) "Grapefruit juice increases serum concentrations of atorvastatin and has no effect on pravastatin." Clin Pharmacol Ther, 66, p. 118-27
- Eagling VA, Profit L, Back DJ (1999) "Inhibition of the CYP3A4-mediated metabolism and P-glycoprotein-mediated transport of the HIV-I protease inhibitor saquinavir by grapefruit juice components." Br J Clin Pharmacol, 48, p. 543-52
- Damkier P, Hansen LL, Brosen K (1999) "Effect of diclofenac, disulfiram, itraconazole, grapefruit juice and erythromycin on the pharmacokinetics of quinidine." Br J Clin Pharmacol, 48, p. 829-38
- Lee AJ, Chan WK, Harralson AF, Buffum J, Bui BCC (1999) "The effects of grapefruit juice on sertraline metabolism: An in vitro and in vivo study." Clin Ther, 21, p. 1890-9
- Dresser GK, Spence JD, Bailey DG (2000) "Pharmacokinetic-pharmacodynamic consequences and clinical relevance of cytochrome P450 3A4 inhibition." Clin Pharmacokinet, 38, p. 41-57
- Gunston GD, Mehta U (2000) "Potentially serious drug interactions with grapefruit juice." S Afr Med J, 90, p. 41
- Takanaga H, Ohnishi A, Maatsuo H, et al. (2000) "Pharmacokinetic analysis of felodipine-grapefruit juice interaction based on an irreversible enzyme inhibition model." Br J Clin Pharmacol, 49, p. 49-58
- Libersa CC, Brique SA, Motte KB, et al. (2000) "Dramatic inhibition of amiodarone metabolism induced by grapefruit juice." Br J Clin Pharmacol, 49, p. 373-8
- Bailey DG, Dresser GR, Kreeft JH, Munoz C, Freeman DJ, Bend JR (2000) "Grapefruit-felodipine interaction: Effect of unprocessed fruit and probable active ingredients." Clin Pharmacol Ther, 68, p. 468-77
- Zaidenstein R, Soback S, Gips M, Avni B, Dishi V, Weissgarten Y, Golik A, Scapa E (2001) "Effect of grapefruit juice on the pharmacokinetics of losartan and its active metabolite E3174 in healthy volunteers." Ther Drug Monit, 23, p. 369-73
- Sato J, Nakata H, Owada E, Kikuta T, Umetsu M, Ito K (1993) "Influence of usual intake of dietary caffeine on single-dose kinetics of theophylline in healthy human subjects." Eur J Clin Pharmacol, 44, p. 295-8
- Flanagan D (2005) "Understanding the grapefruit-drug interaction." Gen Dent, 53, 282-5; quiz 286
Therapeutic duplication warnings
No warnings were found for your selected drugs.
Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.
See also
Drug Interaction Classification
Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit. | |
Moderately clinically significant. Usually avoid combinations; use it only under special circumstances. | |
Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan. | |
No interaction information available. |
Further information
Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.
Check Interactions
To view an interaction report containing 4 (or more) medications, please sign in or create an account.
Save Interactions List
Sign in to your account to save this drug interaction list.