Skip to main content

Drug Interactions between M-Oxy and tazemetostat

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Moderate

oxyCODONE tazemetostat

Applies to: M-Oxy (oxycodone) and tazemetostat

MONITOR: Coadministration with inducers of CYP450 3A4 may decrease the plasma concentrations of opioids that are metabolized by the isoenzyme such as butorphanol, fentanyl, hydrocodone, methadone, and oxycodone. Reduced efficacy or withdrawal symptoms may occur in patients maintained on their narcotic pain regimen following the addition of a CYP450 3A4 inducer. Conversely, discontinuation of the inducer may increase opioid plasma concentrations and potentiate the risk of overdose and fatal respiratory depression.

MANAGEMENT: Pharmacologic response to the opioid should be monitored more closely whenever a CYP450 3A4 inducer is added to or withdrawn from therapy, and the opioid dosage adjusted as necessary.

References

  1. Holmes VF (1991) "Rifampin-induced methadone withdrawal in AIDS." J Clin Psychopharmacol, 10, p. 443-4
  2. Liu S-J, Wang RI (1984) "Case report of barbiturate-induced enhancement of methadone metabolism and withdrawal syndrome." Am J Psychiatry, 141, p. 1287-8
  3. Bell J, Seres V, Bowron P, Lewis J, Batey R (1988) "The use of serum methadone levels in patients receiving methadone maintenance." Clin Pharmacol Ther, 43, p. 623-9
  4. Finelli PF (1976) "Phenytoin and methadone tolerance." N Engl J Med, 294, p. 227
  5. Tong TG, Pond SM, Kreek MJ, et al. (1981) "Phenytoin-induced methadone withdrawal." Ann Intern Med, 94, p. 349-51
  6. Kreek MJ, Garfield JW, Gutjahr CL, Giusti LM (1976) "Rifampin-induced methadone withdrawal." N Engl J Med, 294, p. 1104-6
  7. Bending MR, Skacel PO (1977) "Rifampicin and methadone withdrawal." Lancet, 1, p. 1211
  8. "Product Information. Duragesic Transdermal System (fentanyl)." Janssen Pharmaceutica, Titusville, NJ.
  9. (2001) "Product Information. OxyContin (oxycodone)." Purdue Frederick Company
  10. Raistrick D, Hay A, Wolff K (1996) "Methadone maintenance and tuberculosis treatment." BMJ, 313, p. 925-6
  11. Altice FL, Friedland GH, Cooney EL (1999) "Nevirapine induced opiate withdrawal among injection drug users with HIV infection receiving methadone." AIDS, 13, p. 957-62
  12. Otero MJ, Fuertes A, Sanchez R, Luna G (1999) "Nevirapine-induced withdrawal symptoms in HIV patients on methadone maintenance programme: an alert." AIDS, 13, p. 1004-5
  13. Pinzani V, Faucherre V, Peyriere H, Blayac JP (2000) "Methadone withdrawal symptoms with nevirapine and efavirenz." Ann Pharmacother, 34, p. 405-7
  14. Cerner Multum, Inc. "UK Summary of Product Characteristics."
  15. (2006) "Product Information. Ionsys (fentanyl)." Ortho McNeil Pharmaceutical
  16. (2007) "Product Information. Diskets (methadone)." Cebert Pharmaceuticals Inc
  17. Cerner Multum, Inc. "Australian Product Information."
  18. (2013) "Product Information. Zohydro ER (hydrocodone)." Zogenix, Inc
  19. (2017) "Product Information. Butorphanol Tartrate (butorphanol)." Apotex Corporation
View all 19 references

Switch to consumer interaction data

Drug and food interactions

Major

oxyCODONE food

Applies to: M-Oxy (oxycodone)

GENERALLY AVOID: Alcohol may potentiate the central nervous system (CNS) depressant effects of opioid analgesics including oxycodone. Concomitant use may result in additive CNS depression and impairment of judgment, thinking, and psychomotor skills. In more severe cases, hypotension, respiratory depression, profound sedation, coma, or even death may occur.

GENERALLY AVOID: Grapefruit juice may increase the plasma concentrations of oxycodone. The proposed mechanism is inhibition of CYP450 3A4-mediated metabolism of oxycodone by certain compounds present in grapefruit, resulting in decreased formation of metabolites noroxycodone and noroxymorphone and increased formation of oxymorphone due to a presumed shifting of oxycodone metabolism towards the CYP450 2D6-mediated route. In 12 healthy, nonsmoking volunteers, administration of a single 10 mg oral dose of oxycodone hydrochloride on day 4 of a grapefruit juice treatment phase (200 mL three times a day for 5 days) increased mean oxycodone peak plasma concentration (Cmax), systemic exposure (AUC) and half-life by 48%, 67% and 17% (from 3.5 to 4.1 hours), respectively, compared to administration during an equivalent water treatment phase. Grapefruit juice also decreased the metabolite-to-parent AUC ratio of noroxycodone by 44% and that of noroxymorphone by 45%. In addition, oxymorphone Cmax and AUC increased by 32% and 56%, but the metabolite-to-parent AUC ratio remained unchanged. Pharmacodynamic changes were modest and only self-reported performance was significantly impaired after grapefruit juice. Analgesic effects were not affected.

MANAGEMENT: Patients should not consume alcoholic beverages or use drug products that contain alcohol during treatment with oxycodone. Any history of alcohol or illicit drug use should be considered when prescribing oxycodone, and therapy initiated at a lower dosage if necessary. Patients should be closely monitored for signs and symptoms of sedation, respiratory depression, and hypotension. Due to a high degree of interpatient variability with respect to grapefruit juice interactions, patients treated with oxycodone may also want to avoid or limit the consumption of grapefruit and grapefruit juice.

References

  1. Nieminen TH, Hagelberg NM, Saari TI, et al. (2010) "Grapefruit juice enhances the exposure to oral oxycodone." Basic Clin Pharmacol Toxicol, 107, p. 782-8

Switch to consumer interaction data

Major

tazemetostat food

Applies to: tazemetostat

GENERALLY AVOID: Consumption of grapefruit or grapefruit juice during tazemetostat therapy may significantly increase the plasma concentrations of tazemetostat. The proposed mechanism is inhibition of the CYP450 3A4-mediated metabolism of tazemetostat by certain compounds in grapefruit. Because grapefruit juice inhibits primarily intestinal rather than hepatic CYP450 3A4, the magnitude of interaction is greatest for those drugs that undergo significant presystemic metabolism by CYP450 3A4 (i.e., drugs with low oral bioavailability). According to the product labeling, coadministration of tazemetostat (400 mg twice daily) with the moderate CYP450 3A4 inhibitor fluconazole increased the tazemetostat steady state exposure (AUC 0 to 8 hours) by 3.1-fold and peak plasma concentration by 2.3-fold. In general, the effect of grapefruit juice is concentration-, dose- and preparation-dependent, and can vary widely among brands. Certain preparations of grapefruit juice (e.g., high dose, double strength) have sometimes demonstrated potent inhibition of CYP450 3A4, while other preparations (e.g., low dose, single strength) have typically demonstrated moderate inhibition. Pharmacokinetic interactions involving grapefruit juice are also subject to a high degree of interpatient variability, thus the extent to which a given patient may be affected is difficult to predict. Clinically, this interaction may result in an increased risk of the frequency or severity of adverse reactions due to tazemetostat such as hemorrhage, pleural effusion, skin infection, dyspnea, pain, and respiratory distress.

MANAGEMENT: The manufacturer advises that patients treated with tazemetostat should avoid consumption of grapefruit or grapefruit juice.

References

  1. (2020) "Product Information. Tazverik (tazemetostat)." Epizyme, Inc

Switch to consumer interaction data

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Loading...
QR code containing a link to this page

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.