Skip to main content

Drug Interactions between Loratadine-D 12 Hour and ombitasvir / paritaprevir / ritonavir

This report displays the potential drug interactions for the following 2 drugs:

Edit list (add/remove drugs)

Interactions between your drugs

Moderate

loratadine ritonavir

Applies to: Loratadine-D 12 Hour (loratadine / pseudoephedrine) and ombitasvir / paritaprevir / ritonavir

MONITOR: Coadministration with ritonavir may increase the plasma concentrations of drugs that are substrates of the CYP450 2D6 isoenzyme. The mechanism is decreased clearance due to competitive inhibition of CYP450 2D6 activity by ritonavir. The systemic exposure (AUC) of some coadministered drugs has been reported to increase by up to twofold.

MANAGEMENT: Caution is advised if ritonavir must be used concurrently with medications that undergo metabolism by CYP450 2D6, particularly those with a narrow therapeutic range. Dosage adjustments as well as clinical and laboratory monitoring may be appropriate for some drugs whenever ritonavir is added to or withdrawn from therapy.

References

  1. "Product Information. Norvir (ritonavir)." Abbott Pharmaceutical PROD (2001):

Switch to consumer interaction data

Drug and food interactions

Moderate

ritonavir food

Applies to: ombitasvir / paritaprevir / ritonavir

ADJUST DOSING INTERVAL: Administration with food may modestly affect the bioavailability of ritonavir from the various available formulations. When the oral solution was given under nonfasting conditions, peak ritonavir concentrations decreased 23% and the extent of absorption decreased 7% relative to fasting conditions. Dilution of the oral solution (within one hour of dosing) with 240 mL of chocolate milk or a nutritional supplement (Advera or Ensure) did not significantly affect the extent and rate of ritonavir absorption. When a single 100 mg dose of the tablet was administered with a high-fat meal (907 kcal; 52% fat, 15% protein, 33% carbohydrates), approximately 20% decreases in mean peak concentration (Cmax) and systemic exposure (AUC) were observed relative to administration after fasting. Similar decreases in Cmax and AUC were reported when the tablet was administered with a moderate-fat meal. In contrast, the extent of absorption of ritonavir from the soft gelatin capsule formulation was 13% higher when administered with a meal (615 KCal; 14.5% fat, 9% protein, and 76% carbohydrate) relative to fasting.

MANAGEMENT: Ritonavir should be taken with meals to enhance gastrointestinal tolerability.

References

  1. "Product Information. Norvir (ritonavir)." Abbott Pharmaceutical PROD (2001):

Switch to consumer interaction data

Moderate

paritaprevir food

Applies to: ombitasvir / paritaprevir / ritonavir

ADJUST DOSING INTERVAL: Food enhances the oral bioavailability of ombitasvir, paritaprevir, ritonavir, and dasabuvir. Relative to fasting conditions, administration of ombitasvir, paritaprevir, ritonavir, and dasabuvir with a moderate-fat meal (approximately 600 Kcal; 20% to 30% calories from fat) increased the mean systemic exposure (AUC) by 82%, 211%, 49%, and 30%, respectively. Relative to fasting conditions, administration of ombitasvir, paritaprevir, ritonavir, and dasabuvir with a high-fat meal (approximately 900 Kcal; with 60% calories from fat) increased the mean AUC by 76%, 180%, 44%, and 22%, respectively.

MANAGEMENT: Ombitasvir/paritaprevir/ritonavir plus dasabuvir should always be administered with a meal. The fat or calorie content does not matter.

References

  1. "Product Information. Viekira Pak (dasabuvir/ombitasvir/paritaprev/ritonav)." AbbVie US LLC (2022):

Switch to consumer interaction data

Moderate

pseudoephedrine food

Applies to: Loratadine-D 12 Hour (loratadine / pseudoephedrine)

MONITOR: Coadministration of two or more sympathomimetic agents may increase the risk of adverse effects such as nervousness, irritability, and increased heart rate. Central nervous system (CNS) stimulants, particularly amphetamines, can potentiate the adrenergic response to vasopressors and other sympathomimetic agents. Additive increases in blood pressure and heart rate may occur due to enhanced peripheral sympathetic activity.

MANAGEMENT: Caution is advised if two or more sympathomimetic agents are coadministered. Pulse and blood pressure should be closely monitored.

References

  1. Rosenblatt JE, Lake CR, van Kammen DP, Ziegler MG, Bunney WE Jr "Interactions of amphetamine, pimozide, and lithium on plasma norepineophrine and dopamine-beta-hydroxylase in schizophrenic patients." Psychiatry Res 1 (1979): 45-52
  2. Cavanaugh JH, Griffith JD, Oates JA "Effect of amphetamine on the pressor response to tyramine: formation of p-hydroxynorephedrine from amphetamine in man." Clin Pharmacol Ther 11 (1970): 656
  3. "Product Information. Adderall (amphetamine-dextroamphetamine)." Shire Richwood Pharmaceutical Company Inc PROD (2001):
  4. "Product Information. Tenuate (diethylpropion)." Aventis Pharmaceuticals PROD (2001):
  5. "Product Information. Sanorex (mazindol)." Novartis Pharmaceuticals PROD (2001):
  6. "Product Information. Focalin (dexmethylphenidate)." Mikart Inc (2001):
  7. "Product Information. Strattera (atomoxetine)." Lilly, Eli and Company (2002):
View all 7 references

Switch to consumer interaction data

Minor

loratadine food

Applies to: Loratadine-D 12 Hour (loratadine / pseudoephedrine)

Theoretically, grapefruit juice may increase the plasma concentrations of loratadine as it does other drugs that are substrates of the CYP450 3A4 enzymatic pathway. The proposed mechanism is inhibition of CYP450 3A4-mediated first-pass metabolism in the gut wall by certain compounds present in grapefruits. The clinical significance of this potential interaction is unknown. Reported interactions with potent CYP450 3A4 inhibitors like clarithromycin, erythromycin and ketoconazole have produced substantial increases in the area under the plasma concentration-time curve (AUC) of loratadine and its active metabolite, descarboethoxyloratadine, without associated changes in the overall safety profile of the drug.

References

  1. Edgar B, Bailey D, Bergstrand R, et al. "Acute effects of drinking grapefruit juice on the pharmacokinetics and dynamics on felodipine and its potential clinical relevance." Eur J Clin Pharmacol 42 (1992): 313-7
  2. Bailey DG, Arnold JM, Munoz C, Spence JD "Grapefruit juice--felodipine interaction: mechanism, predictability, and effect of naringin." Clin Pharmacol Ther 53 (1993): 637-42
  3. Bailey DG, Arnold JMO, Spence JD "Grapefruit juice and drugs - how significant is the interaction." Clin Pharmacokinet 26 (1994): 91-8
  4. Sigusch H, Hippius M, Henschel L, Kaufmann K, Hoffmann A "Influence of grapefruit juice on the pharmacokinetics of a slow release nifedipine formulation." Pharmazie 49 (1994): 522-4
  5. Bailey DG, Arnold JM, Strong HA, Munoz C, Spence JD "Effect of grapefruit juice and naringin on nisoldipine pharmacokinetics." Clin Pharmacol Ther 54 (1993): 589-94
  6. Yamreudeewong W, Henann NE, Fazio A, Lower DL, Cassidy TG "Drug-food interactions in clinical practice." J Fam Pract 40 (1995): 376-84
  7. "Grapefruit juice interactions with drugs." Med Lett Drugs Ther 37 (1995): 73-4
  8. Brannan MD, Reidenberg P, Radwanski E, et al. "Loratadine administered concomitantly with erythromycin: pharmacokinetic and electrocardiographic evaluations." Clin Pharmacol Ther 58 (1995): 269-78
  9. Hukkinen SK, Varhe A, Olkkola KT, Neuvonen PJ "Plasma concentrations of triazolam are increased by concomitant ingestion of grapefruit juice." Clin Pharmacol Ther 58 (1995): 127-31
  10. Min DI, Ku YM, Geraets DR, Lee HC "Effect of grapefruit juice on the pharmacokinetics and pharmacodynamics of quinidine in healthy volunteers." J Clin Pharmacol 36 (1996): 469-76
  11. Majeed A, Kareem A "Effect of grapefruit juice on cyclosporine pharmacokinetics." Pediatr Nephrol 10 (1996): 395
  12. Clifford CP, Adams DA, Murray S, Taylor GW, Wilkins MR, Boobis AR, Davies DS "Pharmacokinetic and cardiac effects of terfenadine after inhibition of its metabolism by grapefruit juice." Br J Clin Pharmacol 42 (1996): p662
  13. Josefsson M, Zackrisson AL, Ahlner J "Effect of grapefruit juice on the pharmacokinetics of amlodipine in healthy volunteers." Eur J Clin Pharmacol 51 (1996): 189-93
  14. Yumibe N, Huie K, Chen KJ, Snow M, Clement RP, Cayen MN "Identification of human liver cytochrome P450 enzymes that metabolize the nonsedating antihistamine loratadine. Formation o descarboethoxyloratadine by CYP3A4 and CYP2D6." Biochem Pharmacol 51 (1996): 165-72
  15. Carr RA, Edmonds A, Shi H, Locke CS, Gustavson LE, Craft JC, Harris SI, Palmer R "Steady-state pharmacokinetics and electrocardiographic pharmacodynamics of clarithromycin and loratadine after individual or concomitant administration." Antimicrob Agents Chemother 42 (1998): 1176-80
  16. Kantola T, Kivisto KT, Neuvonen PJ "Grapefruit juice greatly increases serum concentrations of lovastatin and lovastatin acid." Clin Pharmacol Ther 63 (1998): 397-402
  17. Bailey DG, Malcolm J, Arnold O, Spence JD "Grapefruit juice-drug interactions." Br J Clin Pharmacol 46 (1998): 101-10
  18. Bailey DG, Kreeft JH, Munoz C, Freeman DJ, Bend JR "Grapefruit juice felodipine interaction: Effect of naringin and 6',7'-dihydroxybergamottin in humans." Clin Pharmacol Ther 64 (1998): 248-56
  19. Garg SK, Kumar N, Bhargava VK, Prabhakar SK "Effect of grapefruit juice on carbamazepine bioavailability in patients with epilepsy." Clin Pharmacol Ther 64 (1998): 286-8
  20. Lilja JJ, Kivisto KT, Neuvonen PJ "Grapefruit juice-simvastatin interaction: Effect on serum concentrations of simvastatin, simvastatin acid, and HMG-CoA reductase inhibitors." Clin Pharmacol Ther 64 (1998): 477-83
  21. Fuhr U, Maier-Bruggemann A, Blume H, et al. "Grapefruit juice increases oral nimodipine bioavailability." Int J Clin Pharmacol Ther 36 (1998): 126-32
  22. Lilja JJ, Kivisto KT, Neuvonen PJ "Grapefruit juice increases serum concentrations of atorvastatin and has no effect on pravastatin." Clin Pharmacol Ther 66 (1999): 118-27
  23. Eagling VA, Profit L, Back DJ "Inhibition of the CYP3A4-mediated metabolism and P-glycoprotein-mediated transport of the HIV-I protease inhibitor saquinavir by grapefruit juice components." Br J Clin Pharmacol 48 (1999): 543-52
  24. Damkier P, Hansen LL, Brosen K "Effect of diclofenac, disulfiram, itraconazole, grapefruit juice and erythromycin on the pharmacokinetics of quinidine." Br J Clin Pharmacol 48 (1999): 829-38
  25. Lee AJ, Chan WK, Harralson AF, Buffum J, Bui BCC "The effects of grapefruit juice on sertraline metabolism: An in vitro and in vivo study." Clin Ther 21 (1999): 1890-9
  26. Gunston GD, Mehta U "Potentially serious drug interactions with grapefruit juice." S Afr Med J 90 (2000): 41
  27. Takanaga H, Ohnishi A, Maatsuo H, et al. "Pharmacokinetic analysis of felodipine-grapefruit juice interaction based on an irreversible enzyme inhibition model." Br J Clin Pharmacol 49 (2000): 49-58
  28. Libersa CC, Brique SA, Motte KB, et al. "Dramatic inhibition of amiodarone metabolism induced by grapefruit juice." Br J Clin Pharmacol 49 (2000): 373-8
  29. Bailey DG, Dresser GR, Kreeft JH, Munoz C, Freeman DJ, Bend JR "Grapefruit-felodipine interaction: Effect of unprocessed fruit and probable active ingredients." Clin Pharmacol Ther 68 (2000): 468-77
  30. Kosoglou T, Salfi M, Lim JM, Batra VK, Cayen MN, Affrime MB "Evaluation of the pharmacokinetics and electrocardiographic pharmacodynamics of loratadine with concomitant administration of ketoconazole or cimetidine." Br J Clin Pharmacol 50 (2000): 581-9
View all 30 references

Switch to consumer interaction data

Therapeutic duplication warnings

No warnings were found for your selected drugs.

Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.


Report options

Loading...
QR code containing a link to this page

Drug Interaction Classification

These classifications are only a guideline. The relevance of a particular drug interaction to a specific individual is difficult to determine. Always consult your healthcare provider before starting or stopping any medication.
Major Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit.
Moderate Moderately clinically significant. Usually avoid combinations; use it only under special circumstances.
Minor Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan.
Unknown No interaction information available.

Further information

Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.