Drug Interactions between lopinavir / ritonavir and quinine
This report displays the potential drug interactions for the following 2 drugs:
- lopinavir/ritonavir
- quinine
Interactions between your drugs
quiNINE ritonavir
Applies to: quinine and lopinavir / ritonavir
GENERALLY AVOID: Coadministration with ritonavir may significantly increase the plasma concentrations of quinine. The mechanism is ritonavir inhibition of the metabolic clearance of quinine via CYP450 3A4. In ten healthy nonsmoking volunteers, administration of a single 600 mg oral dose of quinine sulfate following pretreatment with ritonavir 200 mg twice a day for 7 days resulted in approximately 4-fold increases in quinine peak plasma concentration (Cmax) and systemic exposure (AUC) and a 4.5-fold decrease in oral clearance (Cl/F) compared to administration alone. Ritonavir also reduced the Cmax and AUC of the metabolite 3-hydroxyquinine by 50% and 60%, respectively, and reduced the metabolic ratio (i.e., ratio of the AUC of metabolite to that of parent drug) by 90%. Clinically, high plasma levels of quinine may increase the risk of QT interval prolongation, which has been associated with ventricular arrhythmias including torsade de pointes and sudden death. The risk of other quinine toxicities such as cinchonism may also be increased. In the same study, single-dose quinine increased the Cmax, AUC, elimination half-life and plasma trough concentration (Cmin) of ritonavir by 15%, 21%, 32% and 66%, respectively. The mechanism may involve quinine inhibition of CYP450 3A4 and 2D6, the isoenzymes responsible for the metabolism of ritonavir.
MANAGEMENT: The use of quinine in combination with ritonavir should generally be avoided. Caution is advised if no alternatives exist and concomitant use is required. Patients should be monitored closely for adverse reactions associated with quinine such as hematologic toxicities and cardiac arrhythmias including torsade de pointes and atrial fibrillation. A dosage reduction of quinine may be necessary. Patients should be advised to contact their physician if they experience increased side effects such as headache, flushing, sweating, nausea, vomiting, diarrhea, abdominal pain, tinnitus, dizziness, vertigo, hearing impairment, blurred vision, vision impairment, and irregular heart rhythm.
References (5)
- Kumar GN, Rodrigues AD, Buko AM, Denissen JF (1996) "Cytochrome p450-mediated metabolism of the HIV-1 protease inhibitor ritonavir (ABT-538) in human liver microsomes." J Pharmacol Exp Ther, 277, p. 423-31
- (2006) "Product Information. Qualaquin (quinine)." AR Scientific Inc
- Soyinka JO, Onyeji CO, Omoruyi SI, Owolabi AR, Sarma PV, Cook JM (2010) "Pharmacokinetic interactions between ritonavir and quinine in healthy volunteers following concurrent administration." Br J Clin Pharmacol, 69, p. 262-70
- Zhang H, Coville PF, Walker RJ, Miners JO, Birkett DJ, Wanwimolruk S (1997) "Evidence for involvement of human CYP3A in the 3-hydroxylation of quinine." Br J Clin Pharmacol, 43, p. 245-52
- Mirghani RA, Yasar U, Zheng T, et al. (2002) "Enzyme kinetics for the formation of 3-hydroxyquinine and three new metabolites of quinine in vitro; 3-hydroxylation by CYP3A4 is indeed the major metabolic pathway." Drug Metab Dispos, 30, p. 1368-71
quiNINE lopinavir
Applies to: quinine and lopinavir / ritonavir
GENERALLY AVOID: Lopinavir in combination with ritonavir may cause dose-related prolongation of the QT interval. Theoretically, coadministration with other agents that can prolong the QT interval may result in additive effects and increased risk of ventricular arrhythmias including torsade de pointes and sudden death. In a study of 39 healthy adults who were administered lopinavir-ritonavir at a therapeutic dosage of 400 mg-100 mg twice daily and a supratherapeutic dosage of 800 mg-200 mg twice daily, the maximum mean time-matched difference in QTcF interval from placebo (after baseline correction) was 5.3 msec for the lower dosage and 15.2 msec for the supratherapeutic dosage in the 12 hours post-dose on treatment day 3 when exposures were approximately 1.5 and 3-fold higher, respectively, than those observed with recommended once-daily or twice-daily dosages of lopinavir-ritonavir at steady state. No subject experienced an increase in QTcF greater than 60 msec from baseline or a QTcF interval exceeding the potentially clinically relevant threshold of 500 msec. There have been cases of QT interval prolongation and torsade de pointes arrhythmia during postmarketing use of lopinavir-ritonavir, although causality could not be established. In general, the risk of an individual agent or a combination of agents causing ventricular arrhythmia in association with QT prolongation is largely unpredictable but may be increased by certain underlying risk factors such as congenital long QT syndrome, cardiac disease, and electrolyte disturbances (e.g., hypokalemia, hypomagnesemia). In addition, the extent of drug-induced QT prolongation is dependent on the particular drug(s) involved and dosage(s) of the drug(s).
MANAGEMENT: Coadministration of lopinavir-ritonavir with other drugs that can prolong the QT interval should generally be avoided. Patients treated with any medication that can cause QT prolongation should be advised to seek prompt medical attention if they experience symptoms that could indicate the occurrence of torsade de pointes such as dizziness, lightheadedness, fainting, palpitation, irregular heart rhythm, shortness of breath, or syncope.
References (5)
- (2001) "Product Information. Kaletra (lopinavir-ritonavir)." Abbott Pharmaceutical
- Anson BD, Weaver JG, Ackerman MJ, et al. (2005) "Blockade of HERG channels by HIV protease inhibitors." Lancet, 365, p. 682-686
- Cerner Multum, Inc. "UK Summary of Product Characteristics."
- Canadian Pharmacists Association (2006) e-CPS. http://www.pharmacists.ca/function/Subscriptions/ecps.cfm?link=eCPS_quikLink
- Cerner Multum, Inc. "Australian Product Information."
Drug and food interactions
ritonavir food
Applies to: lopinavir / ritonavir
ADJUST DOSING INTERVAL: Administration with food may modestly affect the bioavailability of ritonavir from the various available formulations. When the oral solution was given under nonfasting conditions, peak ritonavir concentrations decreased 23% and the extent of absorption decreased 7% relative to fasting conditions. Dilution of the oral solution (within one hour of dosing) with 240 mL of chocolate milk or a nutritional supplement (Advera or Ensure) did not significantly affect the extent and rate of ritonavir absorption. When a single 100 mg dose of the tablet was administered with a high-fat meal (907 kcal; 52% fat, 15% protein, 33% carbohydrates), approximately 20% decreases in mean peak concentration (Cmax) and systemic exposure (AUC) were observed relative to administration after fasting. Similar decreases in Cmax and AUC were reported when the tablet was administered with a moderate-fat meal. In contrast, the extent of absorption of ritonavir from the soft gelatin capsule formulation was 13% higher when administered with a meal (615 KCal; 14.5% fat, 9% protein, and 76% carbohydrate) relative to fasting.
MANAGEMENT: Ritonavir should be taken with meals to enhance gastrointestinal tolerability.
References (1)
- (2001) "Product Information. Norvir (ritonavir)." Abbott Pharmaceutical
lopinavir food
Applies to: lopinavir / ritonavir
ADJUST DOSING INTERVAL: Food significantly increases the bioavailability of lopinavir from the oral solution formulation of lopinavir-ritonavir. Relative to fasting, administration of lopinavir-ritonavir oral solution with a moderate-fat meal (500 to 682 Kcal; 23% to 25% calories from fat) increased lopinavir peak plasma concentration (Cmax) and systemic exposure (AUC) by 54% and 80%, respectively, whereas administration with a high-fat meal (872 Kcal; 56% from fat) increased lopinavir Cmax and AUC by 56% and 130%, respectively. No clinically significant changes in Cmax and AUC were observed following administration of lopinavir-ritonavir tablets under fed conditions versus fasted conditions. Relative to fasting, administration of a single 400 mg-100 mg dose (two 200 mg-50 mg tablets) with a moderate-fat meal (558 Kcal; 24.1% calories from fat) increased lopinavir Cmax and AUC by 17.6% and 26.9%, respectively, while administration with a high-fat meal (998 Kcal; 51.3% from fat) increased lopinavir AUC by 18.9% but not Cmax. Relative to fasting, ritonavir Cmax and AUC also increased by 4.9% and 14.9%, respectively, with the moderate-fat meal and 10.3% and 23.9%, respectively, with the high-fat meal.
MANAGEMENT: Lopinavir-ritonavir oral solution should be taken with meals to enhance bioavailability and minimize pharmacokinetic variability. Lopinavir-ritonavir tablets may be taken without regard to meals.
References (1)
- (2001) "Product Information. Kaletra (lopinavir-ritonavir)." Abbott Pharmaceutical
quiNINE food
Applies to: quinine
Coadministration with grapefruit juice does not appear to affect the pharmacokinetics of quinine in a clinically relevant manner. Although grapefruit juice is an inhibitor of CYP450 3A4 and quinine is metabolized by this pathway to its major metabolite, 3-hydroxyquinine, a study of ten healthy volunteers found no significant differences in quinine peak plasma concentration (Cmax), time to reach Cmax (Tmax), terminal elimination half-life, systemic exposure (AUC), or apparent oral clearance (Cl/F) when a single 600 mg oral dose of quinine sulfate was administered in combination with 200 mL of orange juice (control), half-strength grapefruit juice, and full-strength grapefruit juice twice daily for 6 days each, separated by a 2-week washout period. Relative to the control period, the apparent renal clearance of quinine was markedly increased by 81% during treatment with half-strength grapefruit juice. However, since renal clearance accounts for approximately 6% of the total clearance of quinine, this change would likely have minimal clinical impact. The lack of a significant interaction is probably due to the fact that grapefruit juice primarily inhibits intestinal rather than hepatic CYP450 3A4, and quinine is not known to undergo significant presystemic metabolism as evidenced by its relatively high oral bioavailability (76% to 88%). Nevertheless, excessive consumption of grapefruit juice and tonic water (which contains quinine) was suspected as the cause of torsade de pointes arrhythmia in a patient with a history of asymptomatic long QT syndrome. Treatment with magnesium sulfate and metoprolol had no effect, but the arrhythmia resolved spontaneously 48 hours after discontinuation of the drinks. Based on current data, moderate grapefruit juice consumption is probably safe for the majority of patients taking quinine.
References (5)
- Ho PC, Chalcroft SC, Coville PF, Wanwimolruk S (1999) "Grapefruit juice has no effect on quinine pharmacokinetics." Eur J Clin Pharmacol, 55, p. 393-8
- Hermans K, Stockman D, Van den Branden F (2003) "Grapefruit and tonic: a deadly combination in a patient with the long QT syndrome." Am J Med, 114, p. 511-2
- (2006) "Product Information. Qualaquin (quinine)." AR Scientific Inc
- Zhang H, Coville PF, Walker RJ, Miners JO, Birkett DJ, Wanwimolruk S (1997) "Evidence for involvement of human CYP3A in the 3-hydroxylation of quinine." Br J Clin Pharmacol, 43, p. 245-52
- Mirghani RA, Yasar U, Zheng T, et al. (2002) "Enzyme kinetics for the formation of 3-hydroxyquinine and three new metabolites of quinine in vitro; 3-hydroxylation by CYP3A4 is indeed the major metabolic pathway." Drug Metab Dispos, 30, p. 1368-71
Therapeutic duplication warnings
No warnings were found for your selected drugs.
Therapeutic duplication warnings are only returned when drugs within the same group exceed the recommended therapeutic duplication maximum.
See also
Drug Interaction Classification
Highly clinically significant. Avoid combinations; the risk of the interaction outweighs the benefit. | |
Moderately clinically significant. Usually avoid combinations; use it only under special circumstances. | |
Minimally clinically significant. Minimize risk; assess risk and consider an alternative drug, take steps to circumvent the interaction risk and/or institute a monitoring plan. | |
No interaction information available. |
Further information
Always consult your healthcare provider to ensure the information displayed on this page applies to your personal circumstances.
Check Interactions
To view an interaction report containing 4 (or more) medications, please sign in or create an account.
Save Interactions List
Sign in to your account to save this drug interaction list.